| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trint | Structured version Visualization version GIF version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| trint | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triin 5214 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | intiin 5008 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | treq 5205 | . . 3 ⊢ (∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 → (Tr ∩ 𝐴 ↔ Tr ∩ 𝑥 ∈ 𝐴 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∩ 𝐴 ↔ Tr ∩ 𝑥 ∈ 𝐴 𝑥) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 ∩ cint 4897 ∩ ciin 4942 Tr wtr 5198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-v 3438 df-ss 3919 df-uni 4860 df-int 4898 df-iin 4944 df-tr 5199 |
| This theorem is referenced by: tctr 9630 intwun 10623 intgru 10702 tz9.1regs 35118 dfon2lem8 35823 |
| Copyright terms: Public domain | W3C validator |