|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > trint | Structured version Visualization version GIF version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| trint | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | triin 5275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | intiin 5058 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | treq 5266 | . . 3 ⊢ (∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 → (Tr ∩ 𝐴 ↔ Tr ∩ 𝑥 ∈ 𝐴 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∩ 𝐴 ↔ Tr ∩ 𝑥 ∈ 𝐴 𝑥) | 
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∀wral 3060 ∩ cint 4945 ∩ ciin 4991 Tr wtr 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-v 3481 df-ss 3967 df-uni 4907 df-int 4946 df-iin 4993 df-tr 5259 | 
| This theorem is referenced by: tctr 9781 intwun 10776 intgru 10855 dfon2lem8 35792 | 
| Copyright terms: Public domain | W3C validator |