| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trint | Structured version Visualization version GIF version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| trint | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triin 5251 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | intiin 5040 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | treq 5242 | . . 3 ⊢ (∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 → (Tr ∩ 𝐴 ↔ Tr ∩ 𝑥 ∈ 𝐴 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∩ 𝐴 ↔ Tr ∩ 𝑥 ∈ 𝐴 𝑥) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3052 ∩ cint 4927 ∩ ciin 4973 Tr wtr 5234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-v 3466 df-ss 3948 df-uni 4889 df-int 4928 df-iin 4975 df-tr 5235 |
| This theorem is referenced by: tctr 9759 intwun 10754 intgru 10833 dfon2lem8 35813 |
| Copyright terms: Public domain | W3C validator |