Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT3 Structured version   Visualization version   GIF version

Theorem trsspwALT3 42440
Description: Short predicate calculus proof of the left-to-right implication of dftr4 5196. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 42439, which is the virtual deduction proof trsspwALT 42438 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT3 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 trss 5200 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
2 vex 3436 . . . 4 𝑥 ∈ V
32elpw 4537 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 3syl6ibr 251 . 2 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
54ssrdv 3927 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  𝒫 cpw 4533  Tr wtr 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840  df-tr 5192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator