Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT3 | Structured version Visualization version GIF version |
Description: Short predicate calculus proof of the left-to-right implication of dftr4 5192. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 42328, which is the virtual deduction proof trsspwALT 42327 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trsspwALT3 | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trss 5196 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
2 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | elpw 4534 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
4 | 1, 3 | syl6ibr 251 | . 2 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
5 | 4 | ssrdv 3923 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 Tr wtr 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-tr 5188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |