| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT3 | Structured version Visualization version GIF version | ||
| Description: Short predicate calculus proof of the left-to-right implication of dftr4 5205. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 44812, which is the virtual deduction proof trsspwALT 44811 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| trsspwALT3 | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trss 5209 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpw 4555 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 4 | 1, 3 | imbitrrdi 252 | . 2 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 5 | 4 | ssrdv 3941 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 Tr wtr 5199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3438 df-ss 3920 df-pw 4553 df-uni 4859 df-tr 5200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |