![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT3 | Structured version Visualization version GIF version |
Description: Short predicate calculus proof of the left-to-right implication of dftr4 5268. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 43451, which is the virtual deduction proof trsspwALT 43450 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trsspwALT3 | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trss 5272 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
2 | vex 3479 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | elpw 4602 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
4 | 1, 3 | syl6ibr 252 | . 2 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
5 | 4 | ssrdv 3986 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3946 𝒫 cpw 4598 Tr wtr 5261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-in 3953 df-ss 3963 df-pw 4600 df-uni 4905 df-tr 5262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |