Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT3 Structured version   Visualization version   GIF version

Theorem trsspwALT3 43452
Description: Short predicate calculus proof of the left-to-right implication of dftr4 5268. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 43451, which is the virtual deduction proof trsspwALT 43450 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT3 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 trss 5272 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
2 vex 3479 . . . 4 𝑥 ∈ V
32elpw 4602 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 3syl6ibr 252 . 2 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
54ssrdv 3986 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3946  𝒫 cpw 4598  Tr wtr 5261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-v 3477  df-in 3953  df-ss 3963  df-pw 4600  df-uni 4905  df-tr 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator