Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT3 Structured version   Visualization version   GIF version

Theorem trsspwALT3 44791
Description: Short predicate calculus proof of the left-to-right implication of dftr4 5290. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 44790, which is the virtual deduction proof trsspwALT 44789 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT3 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 trss 5294 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
2 vex 3492 . . . 4 𝑥 ∈ V
32elpw 4626 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 3imbitrrdi 252 . 2 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
54ssrdv 4014 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  𝒫 cpw 4622  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator