| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT2 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of trsspwALT 44850. This proof is the same as the proof of trsspwALT 44850 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| trsspwALT2 | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3914 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
| 2 | id 22 | . . . . . . 7 ⊢ (Tr 𝐴 → Tr 𝐴) | |
| 3 | idd 24 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 4 | trss 5203 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 5 | 2, 3, 4 | sylsyld 61 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
| 6 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpw 4549 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 8 | 5, 7 | imbitrrdi 252 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 9 | 8 | idiALT 44511 | . . . 4 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 10 | 9 | alrimiv 1928 | . . 3 ⊢ (Tr 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 11 | biimpr 220 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴)) | |
| 12 | 1, 10, 11 | mpsyl 68 | . 2 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| 13 | 12 | idiALT 44511 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4545 Tr wtr 5193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-pw 4547 df-uni 4855 df-tr 5194 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |