Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT2 Structured version   Visualization version   GIF version

Theorem trsspwALT2 44069
Description: Virtual deduction proof of trsspwALT 44068. This proof is the same as the proof of trsspwALT 44068 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3960 . . 3 (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴))
2 id 22 . . . . . . 7 (Tr 𝐴 → Tr 𝐴)
3 idd 24 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
4 trss 5266 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
52, 3, 4sylsyld 61 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
6 vex 3470 . . . . . . 7 𝑥 ∈ V
76elpw 4598 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
85, 7imbitrrdi 251 . . . . 5 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
98idiALT 43727 . . . 4 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
109alrimiv 1922 . . 3 (Tr 𝐴 → ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴))
11 biimpr 219 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴))
121, 10, 11mpsyl 68 . 2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
1312idiALT 43727 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wcel 2098  wss 3940  𝒫 cpw 4594  Tr wtr 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-v 3468  df-in 3947  df-ss 3957  df-pw 4596  df-uni 4900  df-tr 5256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator