|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT2 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of trsspwALT 44843. This proof is the same as the proof of trsspwALT 44843 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| trsspwALT2 | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ss 3967 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
| 2 | id 22 | . . . . . . 7 ⊢ (Tr 𝐴 → Tr 𝐴) | |
| 3 | idd 24 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 4 | trss 5269 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 5 | 2, 3, 4 | sylsyld 61 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | 
| 6 | vex 3483 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpw 4603 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | 
| 8 | 5, 7 | imbitrrdi 252 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | 
| 9 | 8 | idiALT 44503 | . . . 4 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | 
| 10 | 9 | alrimiv 1926 | . . 3 ⊢ (Tr 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | 
| 11 | biimpr 220 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴)) | |
| 12 | 1, 10, 11 | mpsyl 68 | . 2 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | 
| 13 | 12 | idiALT 44503 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 ⊆ wss 3950 𝒫 cpw 4599 Tr wtr 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-v 3481 df-ss 3967 df-pw 4601 df-uni 4907 df-tr 5259 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |