Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1 Structured version   Visualization version   GIF version

Theorem aciunf1 32673
Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypotheses
Ref Expression
aciunf1.0 (𝜑𝐴𝑉)
aciunf1.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
aciunf1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑓   𝐵,𝑓,𝑘   𝑗,𝑊   𝜑,𝑓,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑓,𝑗,𝑘)   𝑊(𝑓,𝑘)

Proof of Theorem aciunf1
StepHypRef Expression
1 ssrab2 4080 . . . 4 {𝑗𝐴𝐵 ≠ ∅} ⊆ 𝐴
2 aciunf1.0 . . . 4 (𝜑𝐴𝑉)
3 ssexg 5323 . . . 4 (({𝑗𝐴𝐵 ≠ ∅} ⊆ 𝐴𝐴𝑉) → {𝑗𝐴𝐵 ≠ ∅} ∈ V)
41, 2, 3sylancr 587 . . 3 (𝜑 → {𝑗𝐴𝐵 ≠ ∅} ∈ V)
5 rabid 3458 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ↔ (𝑗𝐴𝐵 ≠ ∅))
65biimpi 216 . . . . 5 (𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} → (𝑗𝐴𝐵 ≠ ∅))
76adantl 481 . . . 4 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → (𝑗𝐴𝐵 ≠ ∅))
87simprd 495 . . 3 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝐵 ≠ ∅)
9 nfrab1 3457 . . 3 𝑗{𝑗𝐴𝐵 ≠ ∅}
107simpld 494 . . . 4 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝑗𝐴)
11 aciunf1.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
1210, 11syldan 591 . . 3 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝐵𝑊)
134, 8, 9, 12aciunf1lem 32672 . 2 (𝜑 → ∃𝑓(𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
14 eqidd 2738 . . . . 5 (𝜑𝑓 = 𝑓)
15 nfv 1914 . . . . . . 7 𝑗𝜑
16 nfcv 2905 . . . . . . . 8 𝑗𝐴
17 nfrab1 3457 . . . . . . . 8 𝑗{𝑗𝐴𝐵 = ∅}
1816, 17nfdif 4129 . . . . . . 7 𝑗(𝐴 ∖ {𝑗𝐴𝐵 = ∅})
19 difrab 4318 . . . . . . . . 9 ({𝑗𝐴 ∣ ⊤} ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)}
2016rabtru 3689 . . . . . . . . . 10 {𝑗𝐴 ∣ ⊤} = 𝐴
2120difeq1i 4122 . . . . . . . . 9 ({𝑗𝐴 ∣ ⊤} ∖ {𝑗𝐴𝐵 = ∅}) = (𝐴 ∖ {𝑗𝐴𝐵 = ∅})
22 truan 1551 . . . . . . . . . . 11 ((⊤ ∧ ¬ 𝐵 = ∅) ↔ ¬ 𝐵 = ∅)
23 df-ne 2941 . . . . . . . . . . 11 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
2422, 23bitr4i 278 . . . . . . . . . 10 ((⊤ ∧ ¬ 𝐵 = ∅) ↔ 𝐵 ≠ ∅)
2524rabbii 3442 . . . . . . . . 9 {𝑗𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)} = {𝑗𝐴𝐵 ≠ ∅}
2619, 21, 253eqtr3i 2773 . . . . . . . 8 (𝐴 ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴𝐵 ≠ ∅}
2726a1i 11 . . . . . . 7 (𝜑 → (𝐴 ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴𝐵 ≠ ∅})
28 eqidd 2738 . . . . . . 7 (𝜑𝐵 = 𝐵)
2915, 18, 9, 27, 28iuneq12df 5018 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵)
30 rabid 3458 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐵 = ∅} ↔ (𝑗𝐴𝐵 = ∅))
3130biimpi 216 . . . . . . . . . 10 (𝑗 ∈ {𝑗𝐴𝐵 = ∅} → (𝑗𝐴𝐵 = ∅))
3231adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → (𝑗𝐴𝐵 = ∅))
3332simprd 495 . . . . . . . 8 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → 𝐵 = ∅)
3433ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑗 ∈ {𝑗𝐴𝐵 = ∅}𝐵 = ∅)
3517iunxdif3 5095 . . . . . . 7 (∀𝑗 ∈ {𝑗𝐴𝐵 = ∅}𝐵 = ∅ → 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗𝐴 𝐵)
3634, 35syl 17 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗𝐴 𝐵)
3729, 36eqtr3d 2779 . . . . 5 (𝜑 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵 = 𝑗𝐴 𝐵)
38 eqidd 2738 . . . . . . 7 (𝜑 → ({𝑗} × 𝐵) = ({𝑗} × 𝐵))
3915, 18, 9, 27, 38iuneq12df 5018 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵))
4033xpeq2d 5715 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → ({𝑗} × 𝐵) = ({𝑗} × ∅))
41 xp0 6178 . . . . . . . . 9 ({𝑗} × ∅) = ∅
4240, 41eqtrdi 2793 . . . . . . . 8 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → ({𝑗} × 𝐵) = ∅)
4342ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑗 ∈ {𝑗𝐴𝐵 = ∅} ({𝑗} × 𝐵) = ∅)
4417iunxdif3 5095 . . . . . . 7 (∀𝑗 ∈ {𝑗𝐴𝐵 = ∅} ({𝑗} × 𝐵) = ∅ → 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4543, 44syl 17 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4639, 45eqtr3d 2779 . . . . 5 (𝜑 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4714, 37, 46f1eq123d 6840 . . . 4 (𝜑 → (𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ↔ 𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵)))
4837raleqdv 3326 . . . 4 (𝜑 → (∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘 ↔ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
4947, 48anbi12d 632 . . 3 (𝜑 → ((𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘) ↔ (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘)))
5049exbidv 1921 . 2 (𝜑 → (∃𝑓(𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘) ↔ ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘)))
5113, 50mpbid 232 1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wtru 1541  wex 1779  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  c0 4333  {csn 4626   ciun 4991   × cxp 5683  1-1wf1 6558  cfv 6561  2nd c2nd 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-en 8986  df-r1 9804  df-rank 9805  df-card 9979  df-ac 10156
This theorem is referenced by:  fsumiunle  32831  esumiun  34095
  Copyright terms: Public domain W3C validator