Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1 Structured version   Visualization version   GIF version

Theorem aciunf1 32594
Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypotheses
Ref Expression
aciunf1.0 (𝜑𝐴𝑉)
aciunf1.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
aciunf1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑓   𝐵,𝑓,𝑘   𝑗,𝑊   𝜑,𝑓,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑓,𝑗,𝑘)   𝑊(𝑓,𝑘)

Proof of Theorem aciunf1
StepHypRef Expression
1 ssrab2 4046 . . . 4 {𝑗𝐴𝐵 ≠ ∅} ⊆ 𝐴
2 aciunf1.0 . . . 4 (𝜑𝐴𝑉)
3 ssexg 5281 . . . 4 (({𝑗𝐴𝐵 ≠ ∅} ⊆ 𝐴𝐴𝑉) → {𝑗𝐴𝐵 ≠ ∅} ∈ V)
41, 2, 3sylancr 587 . . 3 (𝜑 → {𝑗𝐴𝐵 ≠ ∅} ∈ V)
5 rabid 3430 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ↔ (𝑗𝐴𝐵 ≠ ∅))
65biimpi 216 . . . . 5 (𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} → (𝑗𝐴𝐵 ≠ ∅))
76adantl 481 . . . 4 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → (𝑗𝐴𝐵 ≠ ∅))
87simprd 495 . . 3 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝐵 ≠ ∅)
9 nfrab1 3429 . . 3 𝑗{𝑗𝐴𝐵 ≠ ∅}
107simpld 494 . . . 4 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝑗𝐴)
11 aciunf1.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
1210, 11syldan 591 . . 3 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝐵𝑊)
134, 8, 9, 12aciunf1lem 32593 . 2 (𝜑 → ∃𝑓(𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
14 eqidd 2731 . . . . 5 (𝜑𝑓 = 𝑓)
15 nfv 1914 . . . . . . 7 𝑗𝜑
16 nfcv 2892 . . . . . . . 8 𝑗𝐴
17 nfrab1 3429 . . . . . . . 8 𝑗{𝑗𝐴𝐵 = ∅}
1816, 17nfdif 4095 . . . . . . 7 𝑗(𝐴 ∖ {𝑗𝐴𝐵 = ∅})
19 difrab 4284 . . . . . . . . 9 ({𝑗𝐴 ∣ ⊤} ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)}
2016rabtru 3659 . . . . . . . . . 10 {𝑗𝐴 ∣ ⊤} = 𝐴
2120difeq1i 4088 . . . . . . . . 9 ({𝑗𝐴 ∣ ⊤} ∖ {𝑗𝐴𝐵 = ∅}) = (𝐴 ∖ {𝑗𝐴𝐵 = ∅})
22 truan 1551 . . . . . . . . . . 11 ((⊤ ∧ ¬ 𝐵 = ∅) ↔ ¬ 𝐵 = ∅)
23 df-ne 2927 . . . . . . . . . . 11 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
2422, 23bitr4i 278 . . . . . . . . . 10 ((⊤ ∧ ¬ 𝐵 = ∅) ↔ 𝐵 ≠ ∅)
2524rabbii 3414 . . . . . . . . 9 {𝑗𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)} = {𝑗𝐴𝐵 ≠ ∅}
2619, 21, 253eqtr3i 2761 . . . . . . . 8 (𝐴 ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴𝐵 ≠ ∅}
2726a1i 11 . . . . . . 7 (𝜑 → (𝐴 ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴𝐵 ≠ ∅})
28 eqidd 2731 . . . . . . 7 (𝜑𝐵 = 𝐵)
2915, 18, 9, 27, 28iuneq12df 4985 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵)
30 rabid 3430 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐵 = ∅} ↔ (𝑗𝐴𝐵 = ∅))
3130biimpi 216 . . . . . . . . . 10 (𝑗 ∈ {𝑗𝐴𝐵 = ∅} → (𝑗𝐴𝐵 = ∅))
3231adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → (𝑗𝐴𝐵 = ∅))
3332simprd 495 . . . . . . . 8 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → 𝐵 = ∅)
3433ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑗 ∈ {𝑗𝐴𝐵 = ∅}𝐵 = ∅)
3517iunxdif3 5062 . . . . . . 7 (∀𝑗 ∈ {𝑗𝐴𝐵 = ∅}𝐵 = ∅ → 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗𝐴 𝐵)
3634, 35syl 17 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗𝐴 𝐵)
3729, 36eqtr3d 2767 . . . . 5 (𝜑 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵 = 𝑗𝐴 𝐵)
38 eqidd 2731 . . . . . . 7 (𝜑 → ({𝑗} × 𝐵) = ({𝑗} × 𝐵))
3915, 18, 9, 27, 38iuneq12df 4985 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵))
4033xpeq2d 5671 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → ({𝑗} × 𝐵) = ({𝑗} × ∅))
41 xp0 6134 . . . . . . . . 9 ({𝑗} × ∅) = ∅
4240, 41eqtrdi 2781 . . . . . . . 8 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → ({𝑗} × 𝐵) = ∅)
4342ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑗 ∈ {𝑗𝐴𝐵 = ∅} ({𝑗} × 𝐵) = ∅)
4417iunxdif3 5062 . . . . . . 7 (∀𝑗 ∈ {𝑗𝐴𝐵 = ∅} ({𝑗} × 𝐵) = ∅ → 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4543, 44syl 17 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4639, 45eqtr3d 2767 . . . . 5 (𝜑 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4714, 37, 46f1eq123d 6795 . . . 4 (𝜑 → (𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ↔ 𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵)))
4837raleqdv 3301 . . . 4 (𝜑 → (∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘 ↔ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
4947, 48anbi12d 632 . . 3 (𝜑 → ((𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘) ↔ (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘)))
5049exbidv 1921 . 2 (𝜑 → (∃𝑓(𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘) ↔ ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘)))
5113, 50mpbid 232 1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wtru 1541  wex 1779  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592   ciun 4958   × cxp 5639  1-1wf1 6511  cfv 6514  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-en 8922  df-r1 9724  df-rank 9725  df-card 9899  df-ac 10076
This theorem is referenced by:  fsumiunle  32761  esumiun  34091
  Copyright terms: Public domain W3C validator