Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1 Structured version   Visualization version   GIF version

Theorem aciunf1 30902
Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypotheses
Ref Expression
aciunf1.0 (𝜑𝐴𝑉)
aciunf1.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
aciunf1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑓   𝐵,𝑓,𝑘   𝑗,𝑊   𝜑,𝑓,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑓,𝑗,𝑘)   𝑊(𝑓,𝑘)

Proof of Theorem aciunf1
StepHypRef Expression
1 ssrab2 4009 . . . 4 {𝑗𝐴𝐵 ≠ ∅} ⊆ 𝐴
2 aciunf1.0 . . . 4 (𝜑𝐴𝑉)
3 ssexg 5242 . . . 4 (({𝑗𝐴𝐵 ≠ ∅} ⊆ 𝐴𝐴𝑉) → {𝑗𝐴𝐵 ≠ ∅} ∈ V)
41, 2, 3sylancr 586 . . 3 (𝜑 → {𝑗𝐴𝐵 ≠ ∅} ∈ V)
5 rabid 3304 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ↔ (𝑗𝐴𝐵 ≠ ∅))
65biimpi 215 . . . . 5 (𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} → (𝑗𝐴𝐵 ≠ ∅))
76adantl 481 . . . 4 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → (𝑗𝐴𝐵 ≠ ∅))
87simprd 495 . . 3 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝐵 ≠ ∅)
9 nfrab1 3310 . . 3 𝑗{𝑗𝐴𝐵 ≠ ∅}
107simpld 494 . . . 4 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝑗𝐴)
11 aciunf1.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
1210, 11syldan 590 . . 3 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}) → 𝐵𝑊)
134, 8, 9, 12aciunf1lem 30901 . 2 (𝜑 → ∃𝑓(𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
14 eqidd 2739 . . . . 5 (𝜑𝑓 = 𝑓)
15 nfv 1918 . . . . . . 7 𝑗𝜑
16 nfcv 2906 . . . . . . . 8 𝑗𝐴
17 nfrab1 3310 . . . . . . . 8 𝑗{𝑗𝐴𝐵 = ∅}
1816, 17nfdif 4056 . . . . . . 7 𝑗(𝐴 ∖ {𝑗𝐴𝐵 = ∅})
19 difrab 4239 . . . . . . . . 9 ({𝑗𝐴 ∣ ⊤} ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)}
2016rabtru 3614 . . . . . . . . . 10 {𝑗𝐴 ∣ ⊤} = 𝐴
2120difeq1i 4049 . . . . . . . . 9 ({𝑗𝐴 ∣ ⊤} ∖ {𝑗𝐴𝐵 = ∅}) = (𝐴 ∖ {𝑗𝐴𝐵 = ∅})
22 truan 1550 . . . . . . . . . . 11 ((⊤ ∧ ¬ 𝐵 = ∅) ↔ ¬ 𝐵 = ∅)
23 df-ne 2943 . . . . . . . . . . 11 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
2422, 23bitr4i 277 . . . . . . . . . 10 ((⊤ ∧ ¬ 𝐵 = ∅) ↔ 𝐵 ≠ ∅)
2524rabbii 3397 . . . . . . . . 9 {𝑗𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)} = {𝑗𝐴𝐵 ≠ ∅}
2619, 21, 253eqtr3i 2774 . . . . . . . 8 (𝐴 ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴𝐵 ≠ ∅}
2726a1i 11 . . . . . . 7 (𝜑 → (𝐴 ∖ {𝑗𝐴𝐵 = ∅}) = {𝑗𝐴𝐵 ≠ ∅})
28 eqidd 2739 . . . . . . 7 (𝜑𝐵 = 𝐵)
2915, 18, 9, 27, 28iuneq12df 4947 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵)
30 rabid 3304 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐵 = ∅} ↔ (𝑗𝐴𝐵 = ∅))
3130biimpi 215 . . . . . . . . . 10 (𝑗 ∈ {𝑗𝐴𝐵 = ∅} → (𝑗𝐴𝐵 = ∅))
3231adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → (𝑗𝐴𝐵 = ∅))
3332simprd 495 . . . . . . . 8 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → 𝐵 = ∅)
3433ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑗 ∈ {𝑗𝐴𝐵 = ∅}𝐵 = ∅)
3517iunxdif3 5020 . . . . . . 7 (∀𝑗 ∈ {𝑗𝐴𝐵 = ∅}𝐵 = ∅ → 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗𝐴 𝐵)
3634, 35syl 17 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})𝐵 = 𝑗𝐴 𝐵)
3729, 36eqtr3d 2780 . . . . 5 (𝜑 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵 = 𝑗𝐴 𝐵)
38 eqidd 2739 . . . . . . 7 (𝜑 → ({𝑗} × 𝐵) = ({𝑗} × 𝐵))
3915, 18, 9, 27, 38iuneq12df 4947 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵))
4033xpeq2d 5610 . . . . . . . . 9 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → ({𝑗} × 𝐵) = ({𝑗} × ∅))
41 xp0 6050 . . . . . . . . 9 ({𝑗} × ∅) = ∅
4240, 41eqtrdi 2795 . . . . . . . 8 ((𝜑𝑗 ∈ {𝑗𝐴𝐵 = ∅}) → ({𝑗} × 𝐵) = ∅)
4342ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑗 ∈ {𝑗𝐴𝐵 = ∅} ({𝑗} × 𝐵) = ∅)
4417iunxdif3 5020 . . . . . . 7 (∀𝑗 ∈ {𝑗𝐴𝐵 = ∅} ({𝑗} × 𝐵) = ∅ → 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4543, 44syl 17 . . . . . 6 (𝜑 𝑗 ∈ (𝐴 ∖ {𝑗𝐴𝐵 = ∅})({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4639, 45eqtr3d 2780 . . . . 5 (𝜑 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
4714, 37, 46f1eq123d 6692 . . . 4 (𝜑 → (𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ↔ 𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵)))
4837raleqdv 3339 . . . 4 (𝜑 → (∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘 ↔ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
4947, 48anbi12d 630 . . 3 (𝜑 → ((𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘) ↔ (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘)))
5049exbidv 1925 . 2 (𝜑 → (∃𝑓(𝑓: 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵1-1 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗 ∈ {𝑗𝐴𝐵 ≠ ∅}𝐵(2nd ‘(𝑓𝑘)) = 𝑘) ↔ ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘)))
5113, 50mpbid 231 1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wtru 1540  wex 1783  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558   ciun 4921   × cxp 5578  1-1wf1 6415  cfv 6418  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-en 8692  df-r1 9453  df-rank 9454  df-card 9628  df-ac 9803
This theorem is referenced by:  fsumiunle  31045  esumiun  31962
  Copyright terms: Public domain W3C validator