MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euelss Structured version   Visualization version   GIF version

Theorem euelss 4325
Description: Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.)
Assertion
Ref Expression
euelss ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem euelss
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
2 df-rex 3068 . . . . 5 (∃𝑥𝐴 ⊤ ↔ ∃𝑥(𝑥𝐴 ∧ ⊤))
3 ancom 459 . . . . . . 7 ((𝑥𝐴 ∧ ⊤) ↔ (⊤ ∧ 𝑥𝐴))
4 truan 1544 . . . . . . 7 ((⊤ ∧ 𝑥𝐴) ↔ 𝑥𝐴)
53, 4bitri 274 . . . . . 6 ((𝑥𝐴 ∧ ⊤) ↔ 𝑥𝐴)
65exbii 1842 . . . . 5 (∃𝑥(𝑥𝐴 ∧ ⊤) ↔ ∃𝑥 𝑥𝐴)
72, 6sylbbr 235 . . . 4 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 ⊤)
8 df-reu 3375 . . . . 5 (∃!𝑥𝐵 ⊤ ↔ ∃!𝑥(𝑥𝐵 ∧ ⊤))
9 ancom 459 . . . . . . 7 ((𝑥𝐵 ∧ ⊤) ↔ (⊤ ∧ 𝑥𝐵))
10 truan 1544 . . . . . . 7 ((⊤ ∧ 𝑥𝐵) ↔ 𝑥𝐵)
119, 10bitri 274 . . . . . 6 ((𝑥𝐵 ∧ ⊤) ↔ 𝑥𝐵)
1211eubii 2574 . . . . 5 (∃!𝑥(𝑥𝐵 ∧ ⊤) ↔ ∃!𝑥 𝑥𝐵)
138, 12sylbbr 235 . . . 4 (∃!𝑥 𝑥𝐵 → ∃!𝑥𝐵 ⊤)
14 reuss 4320 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 ⊤ ∧ ∃!𝑥𝐵 ⊤) → ∃!𝑥𝐴 ⊤)
151, 7, 13, 14syl3an 1157 . . 3 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥𝐴 ⊤)
16 df-reu 3375 . . 3 (∃!𝑥𝐴 ⊤ ↔ ∃!𝑥(𝑥𝐴 ∧ ⊤))
1715, 16sylib 217 . 2 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥(𝑥𝐴 ∧ ⊤))
18 ancom 459 . . . 4 ((⊤ ∧ 𝑥𝐴) ↔ (𝑥𝐴 ∧ ⊤))
194, 18bitr3i 276 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ⊤))
2019eubii 2574 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥(𝑥𝐴 ∧ ⊤))
2117, 20sylibr 233 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wtru 1534  wex 1773  wcel 2098  ∃!weu 2557  wrex 3067  ∃!wreu 3372  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-reu 3375  df-v 3475  df-in 3956  df-ss 3966
This theorem is referenced by:  initoeu1  18007  termoeu1  18014
  Copyright terms: Public domain W3C validator