MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euelss Structured version   Visualization version   GIF version

Theorem euelss 4080
Description: Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.)
Assertion
Ref Expression
euelss ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem euelss
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
2 df-rex 3061 . . . . 5 (∃𝑥𝐴 ⊤ ↔ ∃𝑥(𝑥𝐴 ∧ ⊤))
3 ancom 452 . . . . . . 7 ((𝑥𝐴 ∧ ⊤) ↔ (⊤ ∧ 𝑥𝐴))
4 truan 1664 . . . . . . 7 ((⊤ ∧ 𝑥𝐴) ↔ 𝑥𝐴)
53, 4bitri 266 . . . . . 6 ((𝑥𝐴 ∧ ⊤) ↔ 𝑥𝐴)
65exbii 1943 . . . . 5 (∃𝑥(𝑥𝐴 ∧ ⊤) ↔ ∃𝑥 𝑥𝐴)
72, 6sylbbr 227 . . . 4 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 ⊤)
8 df-reu 3062 . . . . 5 (∃!𝑥𝐵 ⊤ ↔ ∃!𝑥(𝑥𝐵 ∧ ⊤))
9 ancom 452 . . . . . . 7 ((𝑥𝐵 ∧ ⊤) ↔ (⊤ ∧ 𝑥𝐵))
10 truan 1664 . . . . . . 7 ((⊤ ∧ 𝑥𝐵) ↔ 𝑥𝐵)
119, 10bitri 266 . . . . . 6 ((𝑥𝐵 ∧ ⊤) ↔ 𝑥𝐵)
1211eubii 2584 . . . . 5 (∃!𝑥(𝑥𝐵 ∧ ⊤) ↔ ∃!𝑥 𝑥𝐵)
138, 12sylbbr 227 . . . 4 (∃!𝑥 𝑥𝐵 → ∃!𝑥𝐵 ⊤)
14 reuss 4074 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 ⊤ ∧ ∃!𝑥𝐵 ⊤) → ∃!𝑥𝐴 ⊤)
151, 7, 13, 14syl3an 1199 . . 3 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥𝐴 ⊤)
16 df-reu 3062 . . 3 (∃!𝑥𝐴 ⊤ ↔ ∃!𝑥(𝑥𝐴 ∧ ⊤))
1715, 16sylib 209 . 2 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥(𝑥𝐴 ∧ ⊤))
18 ancom 452 . . . 4 ((⊤ ∧ 𝑥𝐴) ↔ (𝑥𝐴 ∧ ⊤))
194, 18bitr3i 268 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ⊤))
2019eubii 2584 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥(𝑥𝐴 ∧ ⊤))
2117, 20sylibr 225 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107  wtru 1653  wex 1874  wcel 2155  ∃!weu 2581  wrex 3056  ∃!wreu 3057  wss 3734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-ral 3060  df-rex 3061  df-reu 3062  df-in 3741  df-ss 3748
This theorem is referenced by:  initoeu1  16940  termoeu1  16947
  Copyright terms: Public domain W3C validator