Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((topGen‘ran (,))
↾t 𝐴)
∈ Conn) |
2 | | retopon 23927 |
. . . . . . 7
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
3 | 2 | a1i 11 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (topGen‘ran (,)) ∈
(TopOn‘ℝ)) |
4 | | simplll 772 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ℝ) |
5 | | iooretop 23929 |
. . . . . . 7
⊢
(-∞(,)𝑧)
∈ (topGen‘ran (,)) |
6 | 5 | a1i 11 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞(,)𝑧) ∈ (topGen‘ran
(,))) |
7 | | iooretop 23929 |
. . . . . . 7
⊢ (𝑧(,)+∞) ∈
(topGen‘ran (,)) |
8 | 7 | a1i 11 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧(,)+∞) ∈ (topGen‘ran
(,))) |
9 | | simplrl 774 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ 𝐴) |
10 | 4, 9 | sseldd 3922 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ ℝ) |
11 | 10 | mnfltd 12860 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑋) |
12 | | eldifn 4062 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ 𝑧 ∈ 𝐴) |
13 | 12 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧 ∈ 𝐴) |
14 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑋 = 𝑧 → (𝑋 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
15 | 9, 14 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 = 𝑧 → 𝑧 ∈ 𝐴)) |
16 | 13, 15 | mtod 197 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑋 = 𝑧) |
17 | | eldifi 4061 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → 𝑧 ∈ (𝑋[,]𝑌)) |
18 | 17 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ (𝑋[,]𝑌)) |
19 | | simplrr 775 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ 𝐴) |
20 | 4, 19 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ ℝ) |
21 | | elicc2 13144 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌))) |
22 | 10, 20, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌))) |
23 | 18, 22 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌)) |
24 | 23 | simp2d 1142 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ≤ 𝑧) |
25 | 23 | simp1d 1141 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ) |
26 | 10, 25 | leloed 11118 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 ≤ 𝑧 ↔ (𝑋 < 𝑧 ∨ 𝑋 = 𝑧))) |
27 | 24, 26 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 < 𝑧 ∨ 𝑋 = 𝑧)) |
28 | 27 | ord 861 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑋 < 𝑧 → 𝑋 = 𝑧)) |
29 | 16, 28 | mt3d 148 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 < 𝑧) |
30 | | mnfxr 11032 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
31 | 25 | rexrd 11025 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ*) |
32 | | elioo2 13120 |
. . . . . . . . 9
⊢
((-∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋 ∧ 𝑋 < 𝑧))) |
33 | 30, 31, 32 | sylancr 587 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋 ∧ 𝑋 < 𝑧))) |
34 | 10, 11, 29, 33 | mpbir3and 1341 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ (-∞(,)𝑧)) |
35 | | inelcm 4398 |
. . . . . . 7
⊢ ((𝑋 ∈ (-∞(,)𝑧) ∧ 𝑋 ∈ 𝐴) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅) |
36 | 34, 9, 35 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅) |
37 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑌 → (𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴)) |
38 | 19, 37 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 = 𝑌 → 𝑧 ∈ 𝐴)) |
39 | 13, 38 | mtod 197 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧 = 𝑌) |
40 | 23 | simp3d 1143 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ≤ 𝑌) |
41 | 25, 20 | leloed 11118 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ≤ 𝑌 ↔ (𝑧 < 𝑌 ∨ 𝑧 = 𝑌))) |
42 | 40, 41 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 < 𝑌 ∨ 𝑧 = 𝑌)) |
43 | 42 | ord 861 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑧 < 𝑌 → 𝑧 = 𝑌)) |
44 | 39, 43 | mt3d 148 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < 𝑌) |
45 | 20 | ltpnfd 12857 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 < +∞) |
46 | | pnfxr 11029 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
47 | | elioo2 13120 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌 ∧ 𝑌 < +∞))) |
48 | 31, 46, 47 | sylancl 586 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌 ∧ 𝑌 < +∞))) |
49 | 20, 44, 45, 48 | mpbir3and 1341 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ (𝑧(,)+∞)) |
50 | | inelcm 4398 |
. . . . . . 7
⊢ ((𝑌 ∈ (𝑧(,)+∞) ∧ 𝑌 ∈ 𝐴) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅) |
51 | 49, 19, 50 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅) |
52 | | inss1 4162 |
. . . . . . 7
⊢
(((-∞(,)𝑧)
∩ (𝑧(,)+∞)) ∩
𝐴) ⊆
((-∞(,)𝑧) ∩
(𝑧(,)+∞)) |
53 | 31, 30 | jctil 520 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞ ∈
ℝ* ∧ 𝑧
∈ ℝ*)) |
54 | 31, 46 | jctir 521 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ* ∧ +∞
∈ ℝ*)) |
55 | 25 | leidd 11541 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ≤ 𝑧) |
56 | | ioodisj 13214 |
. . . . . . . 8
⊢
((((-∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ*) ∧ (𝑧 ∈ ℝ*
∧ +∞ ∈ ℝ*)) ∧ 𝑧 ≤ 𝑧) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅) |
57 | 53, 54, 55, 56 | syl21anc 835 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅) |
58 | | sseq0 4333 |
. . . . . . 7
⊢
(((((-∞(,)𝑧)
∩ (𝑧(,)+∞)) ∩
𝐴) ⊆
((-∞(,)𝑧) ∩
(𝑧(,)+∞)) ∧
((-∞(,)𝑧) ∩
(𝑧(,)+∞)) = ∅)
→ (((-∞(,)𝑧)
∩ (𝑧(,)+∞)) ∩
𝐴) =
∅) |
59 | 52, 57, 58 | sylancr 587 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅) |
60 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ ∈
ℝ*) |
61 | 46 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → +∞ ∈
ℝ*) |
62 | 25 | mnfltd 12860 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑧) |
63 | 25 | ltpnfd 12857 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < +∞) |
64 | | ioojoin 13215 |
. . . . . . . . . 10
⊢
(((-∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ∧ +∞
∈ ℝ*) ∧ (-∞ < 𝑧 ∧ 𝑧 < +∞)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) =
(-∞(,)+∞)) |
65 | 60, 31, 61, 62, 63, 64 | syl32anc 1377 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) =
(-∞(,)+∞)) |
66 | | unass 4100 |
. . . . . . . . . 10
⊢
(((-∞(,)𝑧)
∪ {𝑧}) ∪ (𝑧(,)+∞)) =
((-∞(,)𝑧) ∪
({𝑧} ∪ (𝑧(,)+∞))) |
67 | | un12 4101 |
. . . . . . . . . 10
⊢
((-∞(,)𝑧)
∪ ({𝑧} ∪ (𝑧(,)+∞))) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) |
68 | 66, 67 | eqtri 2766 |
. . . . . . . . 9
⊢
(((-∞(,)𝑧)
∪ {𝑧}) ∪ (𝑧(,)+∞)) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) |
69 | | ioomax 13154 |
. . . . . . . . 9
⊢
(-∞(,)+∞) = ℝ |
70 | 65, 68, 69 | 3eqtr3g 2801 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) = ℝ) |
71 | 4, 70 | sseqtrrd 3962 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))) |
72 | | disjsn 4647 |
. . . . . . . . 9
⊢ ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝐴) |
73 | 13, 72 | sylibr 233 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ∩ {𝑧}) = ∅) |
74 | | disjssun 4401 |
. . . . . . . 8
⊢ ((𝐴 ∩ {𝑧}) = ∅ → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))) |
75 | 73, 74 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))) |
76 | 71, 75 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) |
77 | 3, 4, 6, 8, 36, 51, 59, 76 | nconnsubb 22574 |
. . . . 5
⊢ ((((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ ((topGen‘ran (,))
↾t 𝐴)
∈ Conn) |
78 | 77 | ex 413 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ ((topGen‘ran (,))
↾t 𝐴)
∈ Conn)) |
79 | 1, 78 | mt2d 136 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ¬ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) |
80 | 79 | eq0rdv 4338 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝑋[,]𝑌) ∖ 𝐴) = ∅) |
81 | | ssdif0 4297 |
. 2
⊢ ((𝑋[,]𝑌) ⊆ 𝐴 ↔ ((𝑋[,]𝑌) ∖ 𝐴) = ∅) |
82 | 80, 81 | sylibr 233 |
1
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴) |