MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem1 Structured version   Visualization version   GIF version

Theorem reconnlem1 24226
Description: Lemma for reconn 24228. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconnlem1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)

Proof of Theorem reconnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
2 retopon 24164 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
32a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
4 simplll 773 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ℝ)
5 iooretop 24166 . . . . . . 7 (-∞(,)𝑧) ∈ (topGen‘ran (,))
65a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞(,)𝑧) ∈ (topGen‘ran (,)))
7 iooretop 24166 . . . . . . 7 (𝑧(,)+∞) ∈ (topGen‘ran (,))
87a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧(,)+∞) ∈ (topGen‘ran (,)))
9 simplrl 775 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝐴)
104, 9sseldd 3948 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ ℝ)
1110mnfltd 13054 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑋)
12 eldifn 4092 . . . . . . . . . . 11 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ 𝑧𝐴)
1312adantl 482 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧𝐴)
14 eleq1 2820 . . . . . . . . . . 11 (𝑋 = 𝑧 → (𝑋𝐴𝑧𝐴))
159, 14syl5ibcom 244 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 = 𝑧𝑧𝐴))
1613, 15mtod 197 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑋 = 𝑧)
17 eldifi 4091 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → 𝑧 ∈ (𝑋[,]𝑌))
1817adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ (𝑋[,]𝑌))
19 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌𝐴)
204, 19sseldd 3948 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ ℝ)
21 elicc2 13339 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2210, 20, 21syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2318, 22mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌))
2423simp2d 1143 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝑧)
2523simp1d 1142 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ)
2610, 25leloed 11307 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋𝑧 ↔ (𝑋 < 𝑧𝑋 = 𝑧)))
2724, 26mpbid 231 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 < 𝑧𝑋 = 𝑧))
2827ord 862 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑋 < 𝑧𝑋 = 𝑧))
2916, 28mt3d 148 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 < 𝑧)
30 mnfxr 11221 . . . . . . . . 9 -∞ ∈ ℝ*
3125rexrd 11214 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ*)
32 elioo2 13315 . . . . . . . . 9 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3330, 31, 32sylancr 587 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3410, 11, 29, 33mpbir3and 1342 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ (-∞(,)𝑧))
35 inelcm 4429 . . . . . . 7 ((𝑋 ∈ (-∞(,)𝑧) ∧ 𝑋𝐴) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
3634, 9, 35syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
37 eleq1 2820 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧𝐴𝑌𝐴))
3819, 37syl5ibrcom 246 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 = 𝑌𝑧𝐴))
3913, 38mtod 197 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧 = 𝑌)
4023simp3d 1144 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑌)
4125, 20leloed 11307 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧𝑌 ↔ (𝑧 < 𝑌𝑧 = 𝑌)))
4240, 41mpbid 231 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 < 𝑌𝑧 = 𝑌))
4342ord 862 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑧 < 𝑌𝑧 = 𝑌))
4439, 43mt3d 148 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < 𝑌)
4520ltpnfd 13051 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 < +∞)
46 pnfxr 11218 . . . . . . . . 9 +∞ ∈ ℝ*
47 elioo2 13315 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
4831, 46, 47sylancl 586 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
4920, 44, 45, 48mpbir3and 1342 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ (𝑧(,)+∞))
50 inelcm 4429 . . . . . . 7 ((𝑌 ∈ (𝑧(,)+∞) ∧ 𝑌𝐴) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
5149, 19, 50syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
52 inss1 4193 . . . . . . 7 (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞))
5331, 30jctil 520 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞ ∈ ℝ*𝑧 ∈ ℝ*))
5431, 46jctir 521 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*))
5525leidd 11730 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑧)
56 ioodisj 13409 . . . . . . . 8 ((((-∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*)) ∧ 𝑧𝑧) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
5753, 54, 55, 56syl21anc 836 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
58 sseq0 4364 . . . . . . 7 (((((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∧ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
5952, 57, 58sylancr 587 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
6030a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ ∈ ℝ*)
6146a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → +∞ ∈ ℝ*)
6225mnfltd 13054 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑧)
6325ltpnfd 13051 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < +∞)
64 ioojoin 13410 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < +∞)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
6560, 31, 61, 62, 63, 64syl32anc 1378 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
66 unass 4131 . . . . . . . . . 10 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞)))
67 un12 4132 . . . . . . . . . 10 ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞))) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
6866, 67eqtri 2759 . . . . . . . . 9 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
69 ioomax 13349 . . . . . . . . 9 (-∞(,)+∞) = ℝ
7065, 68, 693eqtr3g 2794 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) = ℝ)
714, 70sseqtrrd 3988 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
72 disjsn 4677 . . . . . . . . 9 ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝐴)
7313, 72sylibr 233 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ∩ {𝑧}) = ∅)
74 disjssun 4432 . . . . . . . 8 ((𝐴 ∩ {𝑧}) = ∅ → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7671, 75mpbid 231 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
773, 4, 6, 8, 36, 51, 59, 76nconnsubb 22811 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
7877ex 413 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
791, 78mt2d 136 . . 3 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ¬ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴))
8079eq0rdv 4369 . 2 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
81 ssdif0 4328 . 2 ((𝑋[,]𝑌) ⊆ 𝐴 ↔ ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
8280, 81sylibr 233 1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2939  cdif 3910  cun 3911  cin 3912  wss 3913  c0 4287  {csn 4591   class class class wbr 5110  ran crn 5639  cfv 6501  (class class class)co 7362  cr 11059  +∞cpnf 11195  -∞cmnf 11196  *cxr 11197   < clt 11198  cle 11199  (,)cioo 13274  [,]cicc 13277  t crest 17316  topGenctg 17333  TopOnctopon 22296  Conncconn 22799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fi 9356  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-q 12883  df-ioo 13278  df-ico 13280  df-icc 13281  df-rest 17318  df-topgen 17339  df-top 22280  df-topon 22297  df-bases 22333  df-cld 22407  df-conn 22800
This theorem is referenced by:  reconn  24228
  Copyright terms: Public domain W3C validator