MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem1 Structured version   Visualization version   GIF version

Theorem reconnlem1 22911
Description: Lemma for reconn 22913. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconnlem1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)

Proof of Theorem reconnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 785 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
2 retopon 22849 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
32a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
4 simplll 791 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ℝ)
5 iooretop 22851 . . . . . . 7 (-∞(,)𝑧) ∈ (topGen‘ran (,))
65a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞(,)𝑧) ∈ (topGen‘ran (,)))
7 iooretop 22851 . . . . . . 7 (𝑧(,)+∞) ∈ (topGen‘ran (,))
87a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧(,)+∞) ∈ (topGen‘ran (,)))
9 simplrl 795 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝐴)
104, 9sseldd 3764 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ ℝ)
11 mnflt 12160 . . . . . . . . 9 (𝑋 ∈ ℝ → -∞ < 𝑋)
1210, 11syl 17 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑋)
13 eldifn 3897 . . . . . . . . . . 11 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ 𝑧𝐴)
1413adantl 473 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧𝐴)
15 eleq1 2832 . . . . . . . . . . 11 (𝑋 = 𝑧 → (𝑋𝐴𝑧𝐴))
169, 15syl5ibcom 236 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 = 𝑧𝑧𝐴))
1714, 16mtod 189 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑋 = 𝑧)
18 eldifi 3896 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → 𝑧 ∈ (𝑋[,]𝑌))
1918adantl 473 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ (𝑋[,]𝑌))
20 simplrr 796 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌𝐴)
214, 20sseldd 3764 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ ℝ)
22 elicc2 12443 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2310, 21, 22syl2anc 579 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2419, 23mpbid 223 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌))
2524simp2d 1173 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝑧)
2624simp1d 1172 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ)
2710, 26leloed 10436 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋𝑧 ↔ (𝑋 < 𝑧𝑋 = 𝑧)))
2825, 27mpbid 223 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 < 𝑧𝑋 = 𝑧))
2928ord 890 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑋 < 𝑧𝑋 = 𝑧))
3017, 29mt3d 142 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 < 𝑧)
31 mnfxr 10352 . . . . . . . . 9 -∞ ∈ ℝ*
3226rexrd 10345 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ*)
33 elioo2 12421 . . . . . . . . 9 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3431, 32, 33sylancr 581 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3510, 12, 30, 34mpbir3and 1442 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ (-∞(,)𝑧))
36 inelcm 4195 . . . . . . 7 ((𝑋 ∈ (-∞(,)𝑧) ∧ 𝑋𝐴) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
3735, 9, 36syl2anc 579 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
38 eleq1 2832 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧𝐴𝑌𝐴))
3920, 38syl5ibrcom 238 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 = 𝑌𝑧𝐴))
4014, 39mtod 189 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧 = 𝑌)
4124simp3d 1174 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑌)
4226, 21leloed 10436 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧𝑌 ↔ (𝑧 < 𝑌𝑧 = 𝑌)))
4341, 42mpbid 223 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 < 𝑌𝑧 = 𝑌))
4443ord 890 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑧 < 𝑌𝑧 = 𝑌))
4540, 44mt3d 142 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < 𝑌)
46 ltpnf 12157 . . . . . . . . 9 (𝑌 ∈ ℝ → 𝑌 < +∞)
4721, 46syl 17 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 < +∞)
48 pnfxr 10348 . . . . . . . . 9 +∞ ∈ ℝ*
49 elioo2 12421 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
5032, 48, 49sylancl 580 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
5121, 45, 47, 50mpbir3and 1442 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ (𝑧(,)+∞))
52 inelcm 4195 . . . . . . 7 ((𝑌 ∈ (𝑧(,)+∞) ∧ 𝑌𝐴) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
5351, 20, 52syl2anc 579 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
54 inss1 3994 . . . . . . 7 (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞))
5532, 31jctil 515 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞ ∈ ℝ*𝑧 ∈ ℝ*))
5632, 48jctir 516 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*))
5726leidd 10850 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑧)
58 ioodisj 12512 . . . . . . . 8 ((((-∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*)) ∧ 𝑧𝑧) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
5955, 56, 57, 58syl21anc 866 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
60 sseq0 4139 . . . . . . 7 (((((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∧ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
6154, 59, 60sylancr 581 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
6231a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ ∈ ℝ*)
6348a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → +∞ ∈ ℝ*)
64 mnflt 12160 . . . . . . . . . . 11 (𝑧 ∈ ℝ → -∞ < 𝑧)
6526, 64syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑧)
66 ltpnf 12157 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 < +∞)
6726, 66syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < +∞)
68 ioojoin 12513 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < +∞)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
6962, 32, 63, 65, 67, 68syl32anc 1497 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
70 unass 3934 . . . . . . . . . 10 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞)))
71 un12 3935 . . . . . . . . . 10 ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞))) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
7270, 71eqtri 2787 . . . . . . . . 9 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
73 ioomax 12453 . . . . . . . . 9 (-∞(,)+∞) = ℝ
7469, 72, 733eqtr3g 2822 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) = ℝ)
754, 74sseqtr4d 3804 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
76 disjsn 4404 . . . . . . . . 9 ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝐴)
7714, 76sylibr 225 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ∩ {𝑧}) = ∅)
78 disjssun 4198 . . . . . . . 8 ((𝐴 ∩ {𝑧}) = ∅ → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7977, 78syl 17 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
8075, 79mpbid 223 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
813, 4, 6, 8, 37, 53, 61, 80nconnsubb 21509 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
8281ex 401 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
831, 82mt2d 133 . . 3 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ¬ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴))
8483eq0rdv 4143 . 2 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
85 ssdif0 4108 . 2 ((𝑋[,]𝑌) ⊆ 𝐴 ↔ ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
8684, 85sylibr 225 1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  cdif 3731  cun 3732  cin 3733  wss 3734  c0 4081  {csn 4336   class class class wbr 4811  ran crn 5280  cfv 6070  (class class class)co 6844  cr 10190  +∞cpnf 10327  -∞cmnf 10328  *cxr 10329   < clt 10330  cle 10331  (,)cioo 12380  [,]cicc 12383  t crest 16350  topGenctg 16367  TopOnctopon 20997  Conncconn 21497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-oadd 7770  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fi 8526  df-sup 8557  df-inf 8558  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-q 11993  df-ioo 12384  df-ico 12386  df-icc 12387  df-rest 16352  df-topgen 16373  df-top 20981  df-topon 20998  df-bases 21033  df-cld 21106  df-conn 21498
This theorem is referenced by:  reconn  22913
  Copyright terms: Public domain W3C validator