MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem1 Structured version   Visualization version   GIF version

Theorem reconnlem1 24189
Description: Lemma for reconn 24191. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconnlem1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)

Proof of Theorem reconnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
2 retopon 24127 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
32a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
4 simplll 773 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ℝ)
5 iooretop 24129 . . . . . . 7 (-∞(,)𝑧) ∈ (topGen‘ran (,))
65a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞(,)𝑧) ∈ (topGen‘ran (,)))
7 iooretop 24129 . . . . . . 7 (𝑧(,)+∞) ∈ (topGen‘ran (,))
87a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧(,)+∞) ∈ (topGen‘ran (,)))
9 simplrl 775 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝐴)
104, 9sseldd 3945 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ ℝ)
1110mnfltd 13045 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑋)
12 eldifn 4087 . . . . . . . . . . 11 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ 𝑧𝐴)
1312adantl 482 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧𝐴)
14 eleq1 2825 . . . . . . . . . . 11 (𝑋 = 𝑧 → (𝑋𝐴𝑧𝐴))
159, 14syl5ibcom 244 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 = 𝑧𝑧𝐴))
1613, 15mtod 197 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑋 = 𝑧)
17 eldifi 4086 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → 𝑧 ∈ (𝑋[,]𝑌))
1817adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ (𝑋[,]𝑌))
19 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌𝐴)
204, 19sseldd 3945 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ ℝ)
21 elicc2 13329 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2210, 20, 21syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2318, 22mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌))
2423simp2d 1143 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝑧)
2523simp1d 1142 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ)
2610, 25leloed 11298 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋𝑧 ↔ (𝑋 < 𝑧𝑋 = 𝑧)))
2724, 26mpbid 231 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 < 𝑧𝑋 = 𝑧))
2827ord 862 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑋 < 𝑧𝑋 = 𝑧))
2916, 28mt3d 148 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 < 𝑧)
30 mnfxr 11212 . . . . . . . . 9 -∞ ∈ ℝ*
3125rexrd 11205 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ*)
32 elioo2 13305 . . . . . . . . 9 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3330, 31, 32sylancr 587 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3410, 11, 29, 33mpbir3and 1342 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ (-∞(,)𝑧))
35 inelcm 4424 . . . . . . 7 ((𝑋 ∈ (-∞(,)𝑧) ∧ 𝑋𝐴) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
3634, 9, 35syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
37 eleq1 2825 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧𝐴𝑌𝐴))
3819, 37syl5ibrcom 246 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 = 𝑌𝑧𝐴))
3913, 38mtod 197 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧 = 𝑌)
4023simp3d 1144 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑌)
4125, 20leloed 11298 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧𝑌 ↔ (𝑧 < 𝑌𝑧 = 𝑌)))
4240, 41mpbid 231 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 < 𝑌𝑧 = 𝑌))
4342ord 862 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑧 < 𝑌𝑧 = 𝑌))
4439, 43mt3d 148 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < 𝑌)
4520ltpnfd 13042 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 < +∞)
46 pnfxr 11209 . . . . . . . . 9 +∞ ∈ ℝ*
47 elioo2 13305 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
4831, 46, 47sylancl 586 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
4920, 44, 45, 48mpbir3and 1342 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ (𝑧(,)+∞))
50 inelcm 4424 . . . . . . 7 ((𝑌 ∈ (𝑧(,)+∞) ∧ 𝑌𝐴) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
5149, 19, 50syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
52 inss1 4188 . . . . . . 7 (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞))
5331, 30jctil 520 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞ ∈ ℝ*𝑧 ∈ ℝ*))
5431, 46jctir 521 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*))
5525leidd 11721 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑧)
56 ioodisj 13399 . . . . . . . 8 ((((-∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*)) ∧ 𝑧𝑧) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
5753, 54, 55, 56syl21anc 836 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
58 sseq0 4359 . . . . . . 7 (((((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∧ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
5952, 57, 58sylancr 587 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
6030a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ ∈ ℝ*)
6146a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → +∞ ∈ ℝ*)
6225mnfltd 13045 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑧)
6325ltpnfd 13042 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < +∞)
64 ioojoin 13400 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < +∞)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
6560, 31, 61, 62, 63, 64syl32anc 1378 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
66 unass 4126 . . . . . . . . . 10 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞)))
67 un12 4127 . . . . . . . . . 10 ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞))) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
6866, 67eqtri 2764 . . . . . . . . 9 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
69 ioomax 13339 . . . . . . . . 9 (-∞(,)+∞) = ℝ
7065, 68, 693eqtr3g 2799 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) = ℝ)
714, 70sseqtrrd 3985 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
72 disjsn 4672 . . . . . . . . 9 ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝐴)
7313, 72sylibr 233 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ∩ {𝑧}) = ∅)
74 disjssun 4427 . . . . . . . 8 ((𝐴 ∩ {𝑧}) = ∅ → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7671, 75mpbid 231 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
773, 4, 6, 8, 36, 51, 59, 76nconnsubb 22774 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
7877ex 413 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
791, 78mt2d 136 . . 3 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ¬ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴))
8079eq0rdv 4364 . 2 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
81 ssdif0 4323 . 2 ((𝑋[,]𝑌) ⊆ 𝐴 ↔ ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
8280, 81sylibr 233 1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  [,]cicc 13267  t crest 17302  topGenctg 17319  TopOnctopon 22259  Conncconn 22762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-ioo 13268  df-ico 13270  df-icc 13271  df-rest 17304  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-conn 22763
This theorem is referenced by:  reconn  24191
  Copyright terms: Public domain W3C validator