MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem1 Structured version   Visualization version   GIF version

Theorem reconnlem1 24691
Description: Lemma for reconn 24693. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconnlem1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)

Proof of Theorem reconnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
2 retopon 24627 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
32a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
4 simplll 774 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ℝ)
5 iooretop 24629 . . . . . . 7 (-∞(,)𝑧) ∈ (topGen‘ran (,))
65a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞(,)𝑧) ∈ (topGen‘ran (,)))
7 iooretop 24629 . . . . . . 7 (𝑧(,)+∞) ∈ (topGen‘ran (,))
87a1i 11 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧(,)+∞) ∈ (topGen‘ran (,)))
9 simplrl 776 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝐴)
104, 9sseldd 3944 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ ℝ)
1110mnfltd 13060 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑋)
12 eldifn 4091 . . . . . . . . . . 11 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ 𝑧𝐴)
1312adantl 481 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧𝐴)
14 eleq1 2816 . . . . . . . . . . 11 (𝑋 = 𝑧 → (𝑋𝐴𝑧𝐴))
159, 14syl5ibcom 245 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 = 𝑧𝑧𝐴))
1613, 15mtod 198 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑋 = 𝑧)
17 eldifi 4090 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → 𝑧 ∈ (𝑋[,]𝑌))
1817adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ (𝑋[,]𝑌))
19 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌𝐴)
204, 19sseldd 3944 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ ℝ)
21 elicc2 13348 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2210, 20, 21syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ (𝑋[,]𝑌) ↔ (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌)))
2318, 22mpbid 232 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ ∧ 𝑋𝑧𝑧𝑌))
2423simp2d 1143 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋𝑧)
2523simp1d 1142 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ)
2610, 25leloed 11293 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋𝑧 ↔ (𝑋 < 𝑧𝑋 = 𝑧)))
2724, 26mpbid 232 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 < 𝑧𝑋 = 𝑧))
2827ord 864 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑋 < 𝑧𝑋 = 𝑧))
2916, 28mt3d 148 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 < 𝑧)
30 mnfxr 11207 . . . . . . . . 9 -∞ ∈ ℝ*
3125rexrd 11200 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 ∈ ℝ*)
32 elioo2 13323 . . . . . . . . 9 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3330, 31, 32sylancr 587 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑋 ∈ (-∞(,)𝑧) ↔ (𝑋 ∈ ℝ ∧ -∞ < 𝑋𝑋 < 𝑧)))
3410, 11, 29, 33mpbir3and 1343 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑋 ∈ (-∞(,)𝑧))
35 inelcm 4424 . . . . . . 7 ((𝑋 ∈ (-∞(,)𝑧) ∧ 𝑋𝐴) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
3634, 9, 35syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ 𝐴) ≠ ∅)
37 eleq1 2816 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧𝐴𝑌𝐴))
3819, 37syl5ibrcom 247 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 = 𝑌𝑧𝐴))
3913, 38mtod 198 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ 𝑧 = 𝑌)
4023simp3d 1144 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑌)
4125, 20leloed 11293 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧𝑌 ↔ (𝑧 < 𝑌𝑧 = 𝑌)))
4240, 41mpbid 232 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 < 𝑌𝑧 = 𝑌))
4342ord 864 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (¬ 𝑧 < 𝑌𝑧 = 𝑌))
4439, 43mt3d 148 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < 𝑌)
4520ltpnfd 13057 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 < +∞)
46 pnfxr 11204 . . . . . . . . 9 +∞ ∈ ℝ*
47 elioo2 13323 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
4831, 46, 47sylancl 586 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑌 ∈ (𝑧(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑧 < 𝑌𝑌 < +∞)))
4920, 44, 45, 48mpbir3and 1343 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑌 ∈ (𝑧(,)+∞))
50 inelcm 4424 . . . . . . 7 ((𝑌 ∈ (𝑧(,)+∞) ∧ 𝑌𝐴) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
5149, 19, 50syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((𝑧(,)+∞) ∩ 𝐴) ≠ ∅)
52 inss1 4196 . . . . . . 7 (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞))
5331, 30jctil 519 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (-∞ ∈ ℝ*𝑧 ∈ ℝ*))
5431, 46jctir 520 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*))
5525leidd 11720 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧𝑧)
56 ioodisj 13419 . . . . . . . 8 ((((-∞ ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*)) ∧ 𝑧𝑧) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
5753, 54, 55, 56syl21anc 837 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅)
58 sseq0 4362 . . . . . . 7 (((((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) ⊆ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∧ ((-∞(,)𝑧) ∩ (𝑧(,)+∞)) = ∅) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
5952, 57, 58sylancr 587 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∩ (𝑧(,)+∞)) ∩ 𝐴) = ∅)
6030a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ ∈ ℝ*)
6146a1i 11 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → +∞ ∈ ℝ*)
6225mnfltd 13060 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → -∞ < 𝑧)
6325ltpnfd 13057 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝑧 < +∞)
64 ioojoin 13420 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝑧𝑧 < +∞)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
6560, 31, 61, 62, 63, 64syl32anc 1380 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = (-∞(,)+∞))
66 unass 4131 . . . . . . . . . 10 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞)))
67 un12 4132 . . . . . . . . . 10 ((-∞(,)𝑧) ∪ ({𝑧} ∪ (𝑧(,)+∞))) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
6866, 67eqtri 2752 . . . . . . . . 9 (((-∞(,)𝑧) ∪ {𝑧}) ∪ (𝑧(,)+∞)) = ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
69 ioomax 13359 . . . . . . . . 9 (-∞(,)+∞) = ℝ
7065, 68, 693eqtr3g 2787 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) = ℝ)
714, 70sseqtrrd 3981 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
72 disjsn 4671 . . . . . . . . 9 ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝐴)
7313, 72sylibr 234 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ∩ {𝑧}) = ∅)
74 disjssun 4427 . . . . . . . 8 ((𝐴 ∩ {𝑧}) = ∅ → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → (𝐴 ⊆ ({𝑧} ∪ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))) ↔ 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞))))
7671, 75mpbid 232 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → 𝐴 ⊆ ((-∞(,)𝑧) ∪ (𝑧(,)+∞)))
773, 4, 6, 8, 36, 51, 59, 76nconnsubb 23286 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) ∧ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴)) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
7877ex 412 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴) → ¬ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
791, 78mt2d 136 . . 3 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ¬ 𝑧 ∈ ((𝑋[,]𝑌) ∖ 𝐴))
8079eq0rdv 4366 . 2 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
81 ssdif0 4325 . 2 ((𝑋[,]𝑌) ⊆ 𝐴 ↔ ((𝑋[,]𝑌) ∖ 𝐴) = ∅)
8280, 81sylibr 234 1 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋𝐴𝑌𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  ran crn 5632  cfv 6499  (class class class)co 7369  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  (,)cioo 13282  [,]cicc 13285  t crest 17359  topGenctg 17376  TopOnctopon 22773  Conncconn 23274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-ioo 13286  df-ico 13288  df-icc 13289  df-rest 17361  df-topgen 17382  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-conn 23275
This theorem is referenced by:  reconn  24693
  Copyright terms: Public domain W3C validator