Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem6 Structured version   Visualization version   GIF version

Theorem poimirlem6 34975
Description: Lemma for poimir 35002 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem9.2 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
poimirlem6.3 (𝜑𝑀 ∈ (1...((2nd𝑇) − 1)))
Assertion
Ref Expression
poimirlem6 (𝜑 → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑀))
Distinct variable groups:   𝑓,𝑗,𝑛,𝑡,𝑦   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑀,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑛,𝑡   𝑓,𝑀,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑛,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem6
StepHypRef Expression
1 poimirlem9.1 . . . . . . . 8 (𝜑𝑇𝑆)
2 elrabi 3661 . . . . . . . . 9 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
3 poimirlem22.s . . . . . . . . 9 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
42, 3eleq2s 2934 . . . . . . . 8 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
51, 4syl 17 . . . . . . 7 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
6 xp1st 7713 . . . . . . 7 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
75, 6syl 17 . . . . . 6 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
8 xp2nd 7714 . . . . . 6 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
97, 8syl 17 . . . . 5 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
10 fvex 6672 . . . . . 6 (2nd ‘(1st𝑇)) ∈ V
11 f1oeq1 6593 . . . . . 6 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
1210, 11elab 3653 . . . . 5 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
139, 12sylib 221 . . . 4 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
14 f1of 6604 . . . 4 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
1513, 14syl 17 . . 3 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
16 poimirlem9.2 . . . . . . . . 9 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
17 elfznn 12938 . . . . . . . . 9 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℕ)
1816, 17syl 17 . . . . . . . 8 (𝜑 → (2nd𝑇) ∈ ℕ)
1918nnzd 12081 . . . . . . 7 (𝜑 → (2nd𝑇) ∈ ℤ)
20 peano2zm 12020 . . . . . . 7 ((2nd𝑇) ∈ ℤ → ((2nd𝑇) − 1) ∈ ℤ)
2119, 20syl 17 . . . . . 6 (𝜑 → ((2nd𝑇) − 1) ∈ ℤ)
22 poimir.0 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
2322nnzd 12081 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2421zred 12082 . . . . . . 7 (𝜑 → ((2nd𝑇) − 1) ∈ ℝ)
2518nnred 11647 . . . . . . 7 (𝜑 → (2nd𝑇) ∈ ℝ)
2622nnred 11647 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
2725lem1d 11567 . . . . . . 7 (𝜑 → ((2nd𝑇) − 1) ≤ (2nd𝑇))
28 nnm1nn0 11933 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2922, 28syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℕ0)
3029nn0red 11951 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℝ)
31 elfzle2 12913 . . . . . . . . 9 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ≤ (𝑁 − 1))
3216, 31syl 17 . . . . . . . 8 (𝜑 → (2nd𝑇) ≤ (𝑁 − 1))
3326lem1d 11567 . . . . . . . 8 (𝜑 → (𝑁 − 1) ≤ 𝑁)
3425, 30, 26, 32, 33letrd 10791 . . . . . . 7 (𝜑 → (2nd𝑇) ≤ 𝑁)
3524, 25, 26, 27, 34letrd 10791 . . . . . 6 (𝜑 → ((2nd𝑇) − 1) ≤ 𝑁)
36 eluz2 12244 . . . . . 6 (𝑁 ∈ (ℤ‘((2nd𝑇) − 1)) ↔ (((2nd𝑇) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2nd𝑇) − 1) ≤ 𝑁))
3721, 23, 35, 36syl3anbrc 1340 . . . . 5 (𝜑𝑁 ∈ (ℤ‘((2nd𝑇) − 1)))
38 fzss2 12949 . . . . 5 (𝑁 ∈ (ℤ‘((2nd𝑇) − 1)) → (1...((2nd𝑇) − 1)) ⊆ (1...𝑁))
3937, 38syl 17 . . . 4 (𝜑 → (1...((2nd𝑇) − 1)) ⊆ (1...𝑁))
40 poimirlem6.3 . . . 4 (𝜑𝑀 ∈ (1...((2nd𝑇) − 1)))
4139, 40sseldd 3954 . . 3 (𝜑𝑀 ∈ (1...𝑁))
4215, 41ffvelrnd 6841 . 2 (𝜑 → ((2nd ‘(1st𝑇))‘𝑀) ∈ (1...𝑁))
43 xp1st 7713 . . . . . . . . . . . . 13 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
447, 43syl 17 . . . . . . . . . . . 12 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
45 elmapfn 8421 . . . . . . . . . . . 12 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
4644, 45syl 17 . . . . . . . . . . 11 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
4746adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
48 1ex 10631 . . . . . . . . . . . . . . 15 1 ∈ V
49 fnconstg 6556 . . . . . . . . . . . . . . 15 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))))
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1)))
51 c0ex 10629 . . . . . . . . . . . . . . 15 0 ∈ V
52 fnconstg 6556 . . . . . . . . . . . . . . 15 (0 ∈ V → (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))
5351, 52ax-mp 5 . . . . . . . . . . . . . 14 (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))
5450, 53pm3.2i 474 . . . . . . . . . . . . 13 ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∧ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))
55 dff1o3 6610 . . . . . . . . . . . . . . . . 17 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
5655simprbi 500 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
5713, 56syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun (2nd ‘(1st𝑇)))
58 imain 6428 . . . . . . . . . . . . . . 15 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))))
5957, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))))
60 elfznn 12938 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...((2nd𝑇) − 1)) → 𝑀 ∈ ℕ)
6140, 60syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
6261nnred 11647 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℝ)
6362ltm1d 11566 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) < 𝑀)
64 fzdisj 12936 . . . . . . . . . . . . . . . . 17 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅)
6665imaeq2d 5917 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
67 ima0 5933 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)) “ ∅) = ∅
6866, 67syl6eq 2875 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ∅)
6959, 68eqtr3d 2861 . . . . . . . . . . . . 13 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) = ∅)
70 fnun 6452 . . . . . . . . . . . . 13 ((((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∧ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))))
7154, 69, 70sylancr 590 . . . . . . . . . . . 12 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))))
7261nncnd 11648 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
73 npcan1 11059 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
75 nnuz 12276 . . . . . . . . . . . . . . . . . . . 20 ℕ = (ℤ‘1)
7661, 75eleqtrdi 2926 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ (ℤ‘1))
7774, 76eqeltrd 2916 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑀 − 1) + 1) ∈ (ℤ‘1))
78 nnm1nn0 11933 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
7961, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 − 1) ∈ ℕ0)
8079nn0zd 12080 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑀 − 1) ∈ ℤ)
81 uzid 12253 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 − 1) ∈ ℤ → (𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)))
83 peano2uz 12296 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)) → ((𝑀 − 1) + 1) ∈ (ℤ‘(𝑀 − 1)))
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑀 − 1) + 1) ∈ (ℤ‘(𝑀 − 1)))
8574, 84eqeltrrd 2917 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
86 uzss 12260 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (ℤ𝑀) ⊆ (ℤ‘(𝑀 − 1)))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ𝑀) ⊆ (ℤ‘(𝑀 − 1)))
8861nnzd 12081 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
89 elfzle2 12913 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ (1...((2nd𝑇) − 1)) → 𝑀 ≤ ((2nd𝑇) − 1))
9040, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ≤ ((2nd𝑇) − 1))
9162, 24, 26, 90, 35letrd 10791 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀𝑁)
92 eluz2 12244 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
9388, 23, 91, 92syl3anbrc 1340 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ𝑀))
9487, 93sseldd 3954 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘(𝑀 − 1)))
95 fzsplit2 12934 . . . . . . . . . . . . . . . . . 18 ((((𝑀 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)))
9677, 94, 95syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)))
9774oveq1d 7161 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑀 − 1) + 1)...𝑁) = (𝑀...𝑁))
9897uneq2d 4125 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))
9996, 98eqtrd 2859 . . . . . . . . . . . . . . . 16 (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))
10099imaeq2d 5917 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))))
101 imaundi 5996 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))
102100, 101syl6eq 2875 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))))
103 f1ofo 6611 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
10413, 103syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
105 foima 6584 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
106104, 105syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
107102, 106eqtr3d 2861 . . . . . . . . . . . . 13 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) = (1...𝑁))
108107fneq2d 6436 . . . . . . . . . . . 12 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) Fn (1...𝑁)))
10971, 108mpbid 235 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))
110109adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))
111 ovexd 7181 . . . . . . . . . 10 ((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) → (1...𝑁) ∈ V)
112 inidm 4180 . . . . . . . . . 10 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
113 eqidd 2825 . . . . . . . . . 10 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘𝑛))
114 imaundi 5996 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)) “ ({𝑀} ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ {𝑀}) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
115 fzpred 12957 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
11693, 115syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
117116imaeq2d 5917 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) = ((2nd ‘(1st𝑇)) “ ({𝑀} ∪ ((𝑀 + 1)...𝑁))))
118 f1ofn 6605 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
11913, 118syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
120 fnsnfv 6732 . . . . . . . . . . . . . . . . . . . 20 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ 𝑀 ∈ (1...𝑁)) → {((2nd ‘(1st𝑇))‘𝑀)} = ((2nd ‘(1st𝑇)) “ {𝑀}))
121119, 41, 120syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {((2nd ‘(1st𝑇))‘𝑀)} = ((2nd ‘(1st𝑇)) “ {𝑀}))
122121uneq1d 4124 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({((2nd ‘(1st𝑇))‘𝑀)} ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ {𝑀}) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
123114, 117, 1223eqtr4a 2885 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) = ({((2nd ‘(1st𝑇))‘𝑀)} ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
124123xpeq1d 5572 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) = (({((2nd ‘(1st𝑇))‘𝑀)} ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) × {0}))
125 xpundir 5609 . . . . . . . . . . . . . . . 16 (({((2nd ‘(1st𝑇))‘𝑀)} ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) × {0}) = (({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))
126124, 125syl6eq 2875 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) = (({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
127126uneq2d 4125 . . . . . . . . . . . . . 14 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
128 un12 4129 . . . . . . . . . . . . . 14 ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))) = (({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
129127, 128syl6eq 2875 . . . . . . . . . . . . 13 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})) = (({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
130129fveq1d 6661 . . . . . . . . . . . 12 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘𝑛) = ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
131130ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘𝑛) = ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
132 fnconstg 6556 . . . . . . . . . . . . . . . . 17 (0 ∈ V → (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
13351, 132ax-mp 5 . . . . . . . . . . . . . . . 16 (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))
13450, 133pm3.2i 474 . . . . . . . . . . . . . . 15 ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
135 imain 6428 . . . . . . . . . . . . . . . . 17 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
13657, 135syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
13779nn0red 11951 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 − 1) ∈ ℝ)
138 peano2re 10807 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
13962, 138syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 + 1) ∈ ℝ)
14062ltp1d 11564 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 < (𝑀 + 1))
141137, 62, 139, 63, 140lttrd 10795 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 − 1) < (𝑀 + 1))
142 fzdisj 12936 . . . . . . . . . . . . . . . . . . 19 ((𝑀 − 1) < (𝑀 + 1) → ((1...(𝑀 − 1)) ∩ ((𝑀 + 1)...𝑁)) = ∅)
143141, 142syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1...(𝑀 − 1)) ∩ ((𝑀 + 1)...𝑁)) = ∅)
144143imaeq2d 5917 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ ((𝑀 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
145144, 67syl6eq 2875 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∩ ((𝑀 + 1)...𝑁))) = ∅)
146136, 145eqtr3d 2861 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅)
147 fnun 6452 . . . . . . . . . . . . . . 15 ((((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
148134, 146, 147sylancr 590 . . . . . . . . . . . . . 14 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
149 imaundi 5996 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
150 imadif 6427 . . . . . . . . . . . . . . . . . 18 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...𝑁) ∖ {𝑀})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑇)) “ {𝑀})))
15157, 150syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑁) ∖ {𝑀})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑇)) “ {𝑀})))
152 fzsplit 12935 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
15341, 152syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
154153difeq1d 4084 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1...𝑁) ∖ {𝑀}) = (((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∖ {𝑀}))
155 difundir 4242 . . . . . . . . . . . . . . . . . . . 20 (((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∖ {𝑀}) = (((1...𝑀) ∖ {𝑀}) ∪ (((𝑀 + 1)...𝑁) ∖ {𝑀}))
156 fzsplit2 12934 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑀 ∈ (ℤ‘(𝑀 − 1))) → (1...𝑀) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑀)))
15777, 85, 156syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1...𝑀) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑀)))
15874oveq1d 7161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((𝑀 − 1) + 1)...𝑀) = (𝑀...𝑀))
159 fzsn 12951 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
16088, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑀...𝑀) = {𝑀})
161158, 160eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (((𝑀 − 1) + 1)...𝑀) = {𝑀})
162161uneq2d 4125 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑀)) = ((1...(𝑀 − 1)) ∪ {𝑀}))
163157, 162eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝑀) = ((1...(𝑀 − 1)) ∪ {𝑀}))
164163difeq1d 4084 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1...𝑀) ∖ {𝑀}) = (((1...(𝑀 − 1)) ∪ {𝑀}) ∖ {𝑀}))
165 difun2 4412 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...(𝑀 − 1)) ∪ {𝑀}) ∖ {𝑀}) = ((1...(𝑀 − 1)) ∖ {𝑀})
166137, 62ltnled 10781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ ¬ 𝑀 ≤ (𝑀 − 1)))
16763, 166mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ¬ 𝑀 ≤ (𝑀 − 1))
168 elfzle2 12913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (1...(𝑀 − 1)) → 𝑀 ≤ (𝑀 − 1))
169167, 168nsyl 142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ¬ 𝑀 ∈ (1...(𝑀 − 1)))
170 difsn 4716 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑀 ∈ (1...(𝑀 − 1)) → ((1...(𝑀 − 1)) ∖ {𝑀}) = (1...(𝑀 − 1)))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1...(𝑀 − 1)) ∖ {𝑀}) = (1...(𝑀 − 1)))
172165, 171syl5eq 2871 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((1...(𝑀 − 1)) ∪ {𝑀}) ∖ {𝑀}) = (1...(𝑀 − 1)))
173164, 172eqtrd 2859 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((1...𝑀) ∖ {𝑀}) = (1...(𝑀 − 1)))
17462, 139ltnled 10781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
175140, 174mpbid 235 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
176 elfzle1 12912 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑀)
177175, 176nsyl 142 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
178 difsn 4716 . . . . . . . . . . . . . . . . . . . . . 22 𝑀 ∈ ((𝑀 + 1)...𝑁) → (((𝑀 + 1)...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((𝑀 + 1)...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
180173, 179uneq12d 4126 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((1...𝑀) ∖ {𝑀}) ∪ (((𝑀 + 1)...𝑁) ∖ {𝑀})) = ((1...(𝑀 − 1)) ∪ ((𝑀 + 1)...𝑁)))
181155, 180syl5eq 2871 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∖ {𝑀}) = ((1...(𝑀 − 1)) ∪ ((𝑀 + 1)...𝑁)))
182154, 181eqtrd 2859 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1...𝑁) ∖ {𝑀}) = ((1...(𝑀 − 1)) ∪ ((𝑀 + 1)...𝑁)))
183182imaeq2d 5917 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑁) ∖ {𝑀})) = ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ ((𝑀 + 1)...𝑁))))
184121eqcomd 2830 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2nd ‘(1st𝑇)) “ {𝑀}) = {((2nd ‘(1st𝑇))‘𝑀)})
185106, 184difeq12d 4086 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑇)) “ {𝑀})) = ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))
186151, 183, 1853eqtr3d 2867 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ ((𝑀 + 1)...𝑁))) = ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))
187149, 186syl5eqr 2873 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))
188187fneq2d 6436 . . . . . . . . . . . . . 14 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})))
189148, 188mpbid 235 . . . . . . . . . . . . 13 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))
190 eldifsn 4704 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ↔ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)))
191190biimpri 231 . . . . . . . . . . . . . 14 ((𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) → 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))
192191ancoms 462 . . . . . . . . . . . . 13 ((𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀) ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))
193 disjdif 4404 . . . . . . . . . . . . . 14 ({((2nd ‘(1st𝑇))‘𝑀)} ∩ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) = ∅
194 fnconstg 6556 . . . . . . . . . . . . . . . 16 (0 ∈ V → ({((2nd ‘(1st𝑇))‘𝑀)} × {0}) Fn {((2nd ‘(1st𝑇))‘𝑀)})
19551, 194ax-mp 5 . . . . . . . . . . . . . . 15 ({((2nd ‘(1st𝑇))‘𝑀)} × {0}) Fn {((2nd ‘(1st𝑇))‘𝑀)}
196 fvun2 6744 . . . . . . . . . . . . . . 15 ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) Fn {((2nd ‘(1st𝑇))‘𝑀)} ∧ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ∧ (({((2nd ‘(1st𝑇))‘𝑀)} ∩ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
197195, 196mp3an1 1445 . . . . . . . . . . . . . 14 ((((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ∧ (({((2nd ‘(1st𝑇))‘𝑀)} ∩ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
198193, 197mpanr1 702 . . . . . . . . . . . . 13 ((((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
199189, 192, 198syl2an 598 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀) ∧ 𝑛 ∈ (1...𝑁))) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
200199anassrs 471 . . . . . . . . . . 11 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {0}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
201131, 200eqtrd 2859 . . . . . . . . . 10 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
20247, 110, 111, 111, 112, 113, 201ofval 7409 . . . . . . . . 9 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘𝑛) = (((1st ‘(1st𝑇))‘𝑛) + (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛)))
203 fnconstg 6556 . . . . . . . . . . . . . . 15 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)))
20448, 203ax-mp 5 . . . . . . . . . . . . . 14 (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀))
205204, 133pm3.2i 474 . . . . . . . . . . . . 13 ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
206 imain 6428 . . . . . . . . . . . . . . 15 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
20757, 206syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
208 fzdisj 12936 . . . . . . . . . . . . . . . . 17 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
209140, 208syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
210209imaeq2d 5917 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
211210, 67syl6eq 2875 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ∅)
212207, 211eqtr3d 2861 . . . . . . . . . . . . 13 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅)
213 fnun 6452 . . . . . . . . . . . . 13 ((((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
214205, 212, 213sylancr 590 . . . . . . . . . . . 12 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
215153imaeq2d 5917 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))))
216 imaundi 5996 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
217215, 216syl6eq 2875 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
218217, 106eqtr3d 2861 . . . . . . . . . . . . 13 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = (1...𝑁))
219218fneq2d 6436 . . . . . . . . . . . 12 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
220214, 219mpbid 235 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
221220adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
222 imaundi 5996 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ {𝑀})) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ {𝑀}))
223163imaeq2d 5917 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) = ((2nd ‘(1st𝑇)) “ ((1...(𝑀 − 1)) ∪ {𝑀})))
224121uneq2d 4125 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ {((2nd ‘(1st𝑇))‘𝑀)}) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ ((2nd ‘(1st𝑇)) “ {𝑀})))
225222, 223, 2243eqtr4a 2885 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ {((2nd ‘(1st𝑇))‘𝑀)}))
226225xpeq1d 5572 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) = ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ {((2nd ‘(1st𝑇))‘𝑀)}) × {1}))
227 xpundir 5609 . . . . . . . . . . . . . . . 16 ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∪ {((2nd ‘(1st𝑇))‘𝑀)}) × {1}) = ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ ({((2nd ‘(1st𝑇))‘𝑀)} × {1}))
228226, 227syl6eq 2875 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) = ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ ({((2nd ‘(1st𝑇))‘𝑀)} × {1})))
229228uneq1d 4124 . . . . . . . . . . . . . 14 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ ({((2nd ‘(1st𝑇))‘𝑀)} × {1})) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
230 un23 4130 . . . . . . . . . . . . . . 15 (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ ({((2nd ‘(1st𝑇))‘𝑀)} × {1})) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) ∪ ({((2nd ‘(1st𝑇))‘𝑀)} × {1}))
231230equncomi 4117 . . . . . . . . . . . . . 14 (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ ({((2nd ‘(1st𝑇))‘𝑀)} × {1})) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) = (({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
232229, 231syl6eq 2875 . . . . . . . . . . . . 13 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) = (({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
233232fveq1d 6661 . . . . . . . . . . . 12 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛) = ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
234233ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛) = ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
235 fnconstg 6556 . . . . . . . . . . . . . . . 16 (1 ∈ V → ({((2nd ‘(1st𝑇))‘𝑀)} × {1}) Fn {((2nd ‘(1st𝑇))‘𝑀)})
23648, 235ax-mp 5 . . . . . . . . . . . . . . 15 ({((2nd ‘(1st𝑇))‘𝑀)} × {1}) Fn {((2nd ‘(1st𝑇))‘𝑀)}
237 fvun2 6744 . . . . . . . . . . . . . . 15 ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) Fn {((2nd ‘(1st𝑇))‘𝑀)} ∧ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ∧ (({((2nd ‘(1st𝑇))‘𝑀)} ∩ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
238236, 237mp3an1 1445 . . . . . . . . . . . . . 14 ((((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ∧ (({((2nd ‘(1st𝑇))‘𝑀)} ∩ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}))) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
239193, 238mpanr1 702 . . . . . . . . . . . . 13 ((((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)}) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd ‘(1st𝑇))‘𝑀)})) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
240189, 192, 239syl2an 598 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀) ∧ 𝑛 ∈ (1...𝑁))) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
241240anassrs 471 . . . . . . . . . . 11 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → ((({((2nd ‘(1st𝑇))‘𝑀)} × {1}) ∪ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
242234, 241eqtrd 2859 . . . . . . . . . 10 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛))
24347, 221, 111, 111, 112, 113, 242ofval 7409 . . . . . . . . 9 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛) = (((1st ‘(1st𝑇))‘𝑛) + (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑛)))
244202, 243eqtr4d 2862 . . . . . . . 8 (((𝜑𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) ∧ 𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
245244an32s 651 . . . . . . 7 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
246245anasss 470 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
247 fveq2 6659 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
248247breq2d 5065 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
249248ifbid 4472 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
250249csbeq1d 3870 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
251 2fveq3 6664 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
252 2fveq3 6664 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
253252imaeq1d 5916 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
254253xpeq1d 5572 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
255252imaeq1d 5916 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
256255xpeq1d 5572 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
257254, 256uneq12d 4126 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
258251, 257oveq12d 7164 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
259258csbeq2dv 3873 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
260250, 259eqtrd 2859 . . . . . . . . . . . . . 14 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
261260mpteq2dv 5149 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
262261eqeq2d 2835 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
263262, 3elrab2 3669 . . . . . . . . . . 11 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
264263simprbi 500 . . . . . . . . . 10 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2651, 264syl 17 . . . . . . . . 9 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
266 breq1 5056 . . . . . . . . . . . . 13 (𝑦 = (𝑀 − 1) → (𝑦 < (2nd𝑇) ↔ (𝑀 − 1) < (2nd𝑇)))
267 id 22 . . . . . . . . . . . . 13 (𝑦 = (𝑀 − 1) → 𝑦 = (𝑀 − 1))
268266, 267ifbieq1d 4473 . . . . . . . . . . . 12 (𝑦 = (𝑀 − 1) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if((𝑀 − 1) < (2nd𝑇), (𝑀 − 1), (𝑦 + 1)))
26925ltm1d 11566 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑇) − 1) < (2nd𝑇))
27062, 24, 25, 90, 269lelttrd 10792 . . . . . . . . . . . . . 14 (𝜑𝑀 < (2nd𝑇))
271137, 62, 25, 63, 270lttrd 10795 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) < (2nd𝑇))
272271iftrued 4458 . . . . . . . . . . . 12 (𝜑 → if((𝑀 − 1) < (2nd𝑇), (𝑀 − 1), (𝑦 + 1)) = (𝑀 − 1))
273268, 272sylan9eqr 2881 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = (𝑀 − 1))
274273csbeq1d 3870 . . . . . . . . . 10 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑀 − 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
275 oveq2 7154 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 − 1) → (1...𝑗) = (1...(𝑀 − 1)))
276275imaeq2d 5917 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑀 − 1) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))))
277276xpeq1d 5572 . . . . . . . . . . . . . . 15 (𝑗 = (𝑀 − 1) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}))
278277adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑗 = (𝑀 − 1)) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}))
279 oveq1 7153 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 − 1) → (𝑗 + 1) = ((𝑀 − 1) + 1))
280279, 74sylan9eqr 2881 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = (𝑀 − 1)) → (𝑗 + 1) = 𝑀)
281280oveq1d 7161 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑗 + 1)...𝑁) = (𝑀...𝑁))
282281imaeq2d 5917 . . . . . . . . . . . . . . 15 ((𝜑𝑗 = (𝑀 − 1)) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))
283282xpeq1d 5572 . . . . . . . . . . . . . 14 ((𝜑𝑗 = (𝑀 − 1)) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))
284278, 283uneq12d 4126 . . . . . . . . . . . . 13 ((𝜑𝑗 = (𝑀 − 1)) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))
285284oveq2d 7162 . . . . . . . . . . . 12 ((𝜑𝑗 = (𝑀 − 1)) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))))
28679, 285csbied 3902 . . . . . . . . . . 11 (𝜑(𝑀 − 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))))
287286adantr 484 . . . . . . . . . 10 ((𝜑𝑦 = (𝑀 − 1)) → (𝑀 − 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))))
288274, 287eqtrd 2859 . . . . . . . . 9 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))))
289 1red 10636 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
29062, 26, 289, 91lesub1dd 11250 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) ≤ (𝑁 − 1))
291 elfz2nn0 13000 . . . . . . . . . 10 ((𝑀 − 1) ∈ (0...(𝑁 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑀 − 1) ≤ (𝑁 − 1)))
29279, 29, 290, 291syl3anbrc 1340 . . . . . . . . 9 (𝜑 → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
293 ovexd 7181 . . . . . . . . 9 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))) ∈ V)
294265, 288, 292, 293fvmptd 6764 . . . . . . . 8 (𝜑 → (𝐹‘(𝑀 − 1)) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))))
295294fveq1d 6661 . . . . . . 7 (𝜑 → ((𝐹‘(𝑀 − 1))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘𝑛))
296295adantr 484 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀))) → ((𝐹‘(𝑀 − 1))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘𝑛))
297 breq1 5056 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (𝑦 < (2nd𝑇) ↔ 𝑀 < (2nd𝑇)))
298 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑀𝑦 = 𝑀)
299297, 298ifbieq1d 4473 . . . . . . . . . . . 12 (𝑦 = 𝑀 → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if(𝑀 < (2nd𝑇), 𝑀, (𝑦 + 1)))
300270iftrued 4458 . . . . . . . . . . . 12 (𝜑 → if(𝑀 < (2nd𝑇), 𝑀, (𝑦 + 1)) = 𝑀)
301299, 300sylan9eqr 2881 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑀)
302301csbeq1d 3870 . . . . . . . . . 10 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑀 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
303 oveq2 7154 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → (1...𝑗) = (1...𝑀))
304303imaeq2d 5917 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑀)))
305304xpeq1d 5572 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}))
306 oveq1 7153 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑀 → (𝑗 + 1) = (𝑀 + 1))
307306oveq1d 7161 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((𝑗 + 1)...𝑁) = ((𝑀 + 1)...𝑁))
308307imaeq2d 5917 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
309308xpeq1d 5572 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))
310305, 309uneq12d 4126 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
311310oveq2d 7162 . . . . . . . . . . . . 13 (𝑗 = 𝑀 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
312311adantl 485 . . . . . . . . . . . 12 ((𝜑𝑗 = 𝑀) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
31340, 312csbied 3902 . . . . . . . . . . 11 (𝜑𝑀 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
314313adantr 484 . . . . . . . . . 10 ((𝜑𝑦 = 𝑀) → 𝑀 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
315302, 314eqtrd 2859 . . . . . . . . 9 ((𝜑𝑦 = 𝑀) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
31629nn0zd 12080 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℤ)
31725, 26, 289, 34lesub1dd 11250 . . . . . . . . . . . . 13 (𝜑 → ((2nd𝑇) − 1) ≤ (𝑁 − 1))
318 eluz2 12244 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘((2nd𝑇) − 1)) ↔ (((2nd𝑇) − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ ((2nd𝑇) − 1) ≤ (𝑁 − 1)))
31921, 316, 317, 318syl3anbrc 1340 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ (ℤ‘((2nd𝑇) − 1)))
320 fzss2 12949 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘((2nd𝑇) − 1)) → (1...((2nd𝑇) − 1)) ⊆ (1...(𝑁 − 1)))
321319, 320syl 17 . . . . . . . . . . 11 (𝜑 → (1...((2nd𝑇) − 1)) ⊆ (1...(𝑁 − 1)))
322 fz1ssfz0 13005 . . . . . . . . . . 11 (1...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))
323321, 322sstrdi 3965 . . . . . . . . . 10 (𝜑 → (1...((2nd𝑇) − 1)) ⊆ (0...(𝑁 − 1)))
324323, 40sseldd 3954 . . . . . . . . 9 (𝜑𝑀 ∈ (0...(𝑁 − 1)))
325 ovexd 7181 . . . . . . . . 9 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V)
326265, 315, 324, 325fvmptd 6764 . . . . . . . 8 (𝜑 → (𝐹𝑀) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
327326fveq1d 6661 . . . . . . 7 (𝜑 → ((𝐹𝑀)‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
328327adantr 484 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀))) → ((𝐹𝑀)‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑛))
329246, 296, 3283eqtr4d 2869 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀))) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹𝑀)‘𝑛))
330329expr 460 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 ≠ ((2nd ‘(1st𝑇))‘𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹𝑀)‘𝑛)))
331330necon1d 3036 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) → 𝑛 = ((2nd ‘(1st𝑇))‘𝑀)))
332 elmapi 8420 . . . . . . . . . . 11 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
33344, 332syl 17 . . . . . . . . . 10 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
334333, 42ffvelrnd 6841 . . . . . . . . 9 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ∈ (0..^𝐾))
335 elfzonn0 13084 . . . . . . . . 9 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ∈ ℕ0)
336334, 335syl 17 . . . . . . . 8 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ∈ ℕ0)
337336nn0red 11951 . . . . . . 7 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ∈ ℝ)
338337ltp1d 11564 . . . . . . 7 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) < (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 1))
339337, 338ltned 10770 . . . . . 6 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 1))
340294fveq1d 6661 . . . . . . 7 (𝜑 → ((𝐹‘(𝑀 − 1))‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑀)))
341 ovexd 7181 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ V)
342 eqidd 2825 . . . . . . . . 9 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)))
343 fzss1 12948 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘1) → (𝑀...𝑁) ⊆ (1...𝑁))
34476, 343syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀...𝑁) ⊆ (1...𝑁))
345 eluzfz1 12916 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
34693, 345syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (𝑀...𝑁))
347 fnfvima 6985 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ (𝑀...𝑁) ⊆ (1...𝑁) ∧ 𝑀 ∈ (𝑀...𝑁)) → ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))
348119, 344, 346, 347syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))
349 fvun2 6744 . . . . . . . . . . . . 13 (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∧ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = ((((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑀)))
35050, 53, 349mp3an12 1448 . . . . . . . . . . . 12 (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) ∩ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = ((((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑀)))
35169, 348, 350syl2anc 587 . . . . . . . . . . 11 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = ((((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑀)))
35251fvconst2 6955 . . . . . . . . . . . 12 (((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) → ((((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑀)) = 0)
353348, 352syl 17 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑀)) = 0)
354351, 353eqtrd 2859 . . . . . . . . . 10 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = 0)
355354adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = 0)
35646, 109, 341, 341, 112, 342, 355ofval 7409 . . . . . . . 8 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 0))
35742, 356mpdan 686 . . . . . . 7 (𝜑 → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑀 − 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (𝑀...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 0))
358336nn0cnd 11952 . . . . . . . 8 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) ∈ ℂ)
359358addid1d 10834 . . . . . . 7 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 0) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)))
360340, 357, 3593eqtrd 2863 . . . . . 6 (𝜑 → ((𝐹‘(𝑀 − 1))‘((2nd ‘(1st𝑇))‘𝑀)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)))
361326fveq1d 6661 . . . . . . 7 (𝜑 → ((𝐹𝑀)‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑀)))
362 fzss2 12949 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → (1...𝑀) ⊆ (1...𝑁))
36393, 362syl 17 . . . . . . . . . . . . 13 (𝜑 → (1...𝑀) ⊆ (1...𝑁))
364 elfz1end 12939 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
36561, 364sylib 221 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (1...𝑀))
366 fnfvima 6985 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ (1...𝑀) ⊆ (1...𝑁) ∧ 𝑀 ∈ (1...𝑀)) → ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)))
367119, 363, 365, 366syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)))
368 fvun1 6743 . . . . . . . . . . . . 13 (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘((2nd ‘(1st𝑇))‘𝑀)))
369204, 133, 368mp3an12 1448 . . . . . . . . . . . 12 (((((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘((2nd ‘(1st𝑇))‘𝑀)))
370212, 367, 369syl2anc 587 . . . . . . . . . . 11 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘((2nd ‘(1st𝑇))‘𝑀)))
37148fvconst2 6955 . . . . . . . . . . . 12 (((2nd ‘(1st𝑇))‘𝑀) ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘((2nd ‘(1st𝑇))‘𝑀)) = 1)
372367, 371syl 17 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘((2nd ‘(1st𝑇))‘𝑀)) = 1)
373370, 372eqtrd 2859 . . . . . . . . . 10 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = 1)
374373adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑀)) = 1)
37546, 220, 341, 341, 112, 342, 374ofval 7409 . . . . . . . 8 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑀) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 1))
37642, 375mpdan 686 . . . . . . 7 (𝜑 → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 1))
377361, 376eqtrd 2859 . . . . . 6 (𝜑 → ((𝐹𝑀)‘((2nd ‘(1st𝑇))‘𝑀)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑀)) + 1))
378339, 360, 3773netr4d 3091 . . . . 5 (𝜑 → ((𝐹‘(𝑀 − 1))‘((2nd ‘(1st𝑇))‘𝑀)) ≠ ((𝐹𝑀)‘((2nd ‘(1st𝑇))‘𝑀)))
379 fveq2 6659 . . . . . 6 (𝑛 = ((2nd ‘(1st𝑇))‘𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘((2nd ‘(1st𝑇))‘𝑀)))
380 fveq2 6659 . . . . . 6 (𝑛 = ((2nd ‘(1st𝑇))‘𝑀) → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘((2nd ‘(1st𝑇))‘𝑀)))
381379, 380neeq12d 3075 . . . . 5 (𝑛 = ((2nd ‘(1st𝑇))‘𝑀) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘((2nd ‘(1st𝑇))‘𝑀)) ≠ ((𝐹𝑀)‘((2nd ‘(1st𝑇))‘𝑀))))
382378, 381syl5ibrcom 250 . . . 4 (𝜑 → (𝑛 = ((2nd ‘(1st𝑇))‘𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)))
383382adantr 484 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 = ((2nd ‘(1st𝑇))‘𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)))
384331, 383impbid 215 . 2 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ 𝑛 = ((2nd ‘(1st𝑇))‘𝑀)))
38542, 384riota5 7133 1 (𝜑 → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  {cab 2802  wne 3014  {crab 3137  Vcvv 3480  csb 3866  cdif 3916  cun 3917  cin 3918  wss 3919  c0 4276  ifcif 4450  {csn 4550   class class class wbr 5053  cmpt 5133   × cxp 5541  ccnv 5542  cima 5546  Fun wfun 6338   Fn wfn 6339  wf 6340  ontowfo 6342  1-1-ontowf1o 6343  cfv 6344  crio 7103  (class class class)co 7146  f cof 7398  1st c1st 7679  2nd c2nd 7680  m cmap 8398  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cn 11632  0cn0 11892  cz 11976  cuz 12238  ...cfz 12892  ..^cfzo 13035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036
This theorem is referenced by:  poimirlem8  34977
  Copyright terms: Public domain W3C validator