Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asindmre Structured version   Visualization version   GIF version

Theorem asindmre 34979
Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
asindmre (𝐷 ∩ ℝ) = (-1(,)1)

Proof of Theorem asindmre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 un12 4145 . . . . 5 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞)))
2 neg1rr 11755 . . . . . . . . . 10 -1 ∈ ℝ
32rexri 10701 . . . . . . . . 9 -1 ∈ ℝ*
4 1xr 10702 . . . . . . . . 9 1 ∈ ℝ*
5 pnfxr 10697 . . . . . . . . 9 +∞ ∈ ℝ*
63, 4, 53pm3.2i 1335 . . . . . . . 8 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
7 neg1lt0 11757 . . . . . . . . . 10 -1 < 0
8 0lt1 11164 . . . . . . . . . 10 0 < 1
9 0re 10645 . . . . . . . . . . 11 0 ∈ ℝ
10 1re 10643 . . . . . . . . . . 11 1 ∈ ℝ
112, 9, 10lttri 10768 . . . . . . . . . 10 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
127, 8, 11mp2an 690 . . . . . . . . 9 -1 < 1
13 ltpnf 12518 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
1410, 13ax-mp 5 . . . . . . . . 9 1 < +∞
1512, 14pm3.2i 473 . . . . . . . 8 (-1 < 1 ∧ 1 < +∞)
16 df-ioo 12745 . . . . . . . . 9 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
17 df-ico 12747 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
18 xrlenlt 10708 . . . . . . . . 9 ((1 ∈ ℝ*𝑤 ∈ ℝ*) → (1 ≤ 𝑤 ↔ ¬ 𝑤 < 1))
19 xrlttr 12536 . . . . . . . . 9 ((𝑤 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 1 ∧ 1 < +∞) → 𝑤 < +∞))
20 xrltletr 12553 . . . . . . . . 9 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-1 < 1 ∧ 1 ≤ 𝑤) → -1 < 𝑤))
2116, 17, 18, 16, 19, 20ixxun 12757 . . . . . . . 8 (((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-1 < 1 ∧ 1 < +∞)) → ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞))
226, 15, 21mp2an 690 . . . . . . 7 ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞)
2322uneq2i 4138 . . . . . 6 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ (-1(,)+∞))
24 mnfxr 10700 . . . . . . . 8 -∞ ∈ ℝ*
2524, 3, 53pm3.2i 1335 . . . . . . 7 (-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
26 mnflt 12521 . . . . . . . . 9 (-1 ∈ ℝ → -∞ < -1)
27 ltpnf 12518 . . . . . . . . 9 (-1 ∈ ℝ → -1 < +∞)
2826, 27jca 514 . . . . . . . 8 (-1 ∈ ℝ → (-∞ < -1 ∧ -1 < +∞))
292, 28ax-mp 5 . . . . . . 7 (-∞ < -1 ∧ -1 < +∞)
30 df-ioc 12746 . . . . . . . 8 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
31 xrltnle 10710 . . . . . . . 8 ((-1 ∈ ℝ*𝑤 ∈ ℝ*) → (-1 < 𝑤 ↔ ¬ 𝑤 ≤ -1))
32 xrlelttr 12552 . . . . . . . 8 ((𝑤 ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ -1 ∧ -1 < +∞) → 𝑤 < +∞))
33 xrlttr 12536 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < -1 ∧ -1 < 𝑤) → -∞ < 𝑤))
3430, 16, 31, 16, 32, 33ixxun 12757 . . . . . . 7 (((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < -1 ∧ -1 < +∞)) → ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞))
3525, 29, 34mp2an 690 . . . . . 6 ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞)
3623, 35eqtri 2846 . . . . 5 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = (-∞(,)+∞)
37 ioomax 12814 . . . . 5 (-∞(,)+∞) = ℝ
381, 36, 373eqtri 2850 . . . 4 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ℝ
3938difeq1i 4097 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
40 difun2 4431 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
41 ax-resscn 10596 . . . 4 ℝ ⊆ ℂ
42 difin2 4268 . . . 4 (ℝ ⊆ ℂ → (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ))
4341, 42ax-mp 5 . . 3 (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
4439, 40, 433eqtr3ri 2855 . 2 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
45 dvasin.d . . 3 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4645ineq1i 4187 . 2 (𝐷 ∩ ℝ) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
47 incom 4180 . . . . 5 ((-1(,)1) ∩ (-∞(,]-1)) = ((-∞(,]-1) ∩ (-1(,)1))
4830, 16, 31ixxdisj 12756 . . . . . 6 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((-∞(,]-1) ∩ (-1(,)1)) = ∅)
4924, 3, 4, 48mp3an 1457 . . . . 5 ((-∞(,]-1) ∩ (-1(,)1)) = ∅
5047, 49eqtri 2846 . . . 4 ((-1(,)1) ∩ (-∞(,]-1)) = ∅
5116, 17, 18ixxdisj 12756 . . . . 5 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-1(,)1) ∩ (1[,)+∞)) = ∅)
523, 4, 5, 51mp3an 1457 . . . 4 ((-1(,)1) ∩ (1[,)+∞)) = ∅
5350, 52pm3.2i 473 . . 3 (((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅)
54 un00 4396 . . . 4 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
55 indi 4252 . . . . 5 ((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞)))
5655eqeq1i 2828 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
57 disj3 4405 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5854, 56, 573bitr2i 301 . . 3 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5953, 58mpbi 232 . 2 (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
6044, 46, 593eqtr4i 2856 1 (𝐷 ∩ ℝ) = (-1(,)1)
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  -cneg 10873  (,)cioo 12741  (,]cioc 12742  [,)cico 12743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-ioo 12745  df-ioc 12746  df-ico 12747
This theorem is referenced by:  dvasin  34980  dvreasin  34982  dvreacos  34983
  Copyright terms: Public domain W3C validator