Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asindmre Structured version   Visualization version   GIF version

Theorem asindmre 35839
Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
asindmre (𝐷 ∩ ℝ) = (-1(,)1)

Proof of Theorem asindmre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 un12 4105 . . . . 5 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞)))
2 neg1rr 12071 . . . . . . . . . 10 -1 ∈ ℝ
32rexri 11017 . . . . . . . . 9 -1 ∈ ℝ*
4 1xr 11018 . . . . . . . . 9 1 ∈ ℝ*
5 pnfxr 11013 . . . . . . . . 9 +∞ ∈ ℝ*
63, 4, 53pm3.2i 1337 . . . . . . . 8 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
7 neg1lt0 12073 . . . . . . . . . 10 -1 < 0
8 0lt1 11480 . . . . . . . . . 10 0 < 1
9 0re 10961 . . . . . . . . . . 11 0 ∈ ℝ
10 1re 10959 . . . . . . . . . . 11 1 ∈ ℝ
112, 9, 10lttri 11084 . . . . . . . . . 10 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
127, 8, 11mp2an 688 . . . . . . . . 9 -1 < 1
13 ltpnf 12838 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
1410, 13ax-mp 5 . . . . . . . . 9 1 < +∞
1512, 14pm3.2i 470 . . . . . . . 8 (-1 < 1 ∧ 1 < +∞)
16 df-ioo 13065 . . . . . . . . 9 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
17 df-ico 13067 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
18 xrlenlt 11024 . . . . . . . . 9 ((1 ∈ ℝ*𝑤 ∈ ℝ*) → (1 ≤ 𝑤 ↔ ¬ 𝑤 < 1))
19 xrlttr 12856 . . . . . . . . 9 ((𝑤 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 1 ∧ 1 < +∞) → 𝑤 < +∞))
20 xrltletr 12873 . . . . . . . . 9 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-1 < 1 ∧ 1 ≤ 𝑤) → -1 < 𝑤))
2116, 17, 18, 16, 19, 20ixxun 13077 . . . . . . . 8 (((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-1 < 1 ∧ 1 < +∞)) → ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞))
226, 15, 21mp2an 688 . . . . . . 7 ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞)
2322uneq2i 4098 . . . . . 6 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ (-1(,)+∞))
24 mnfxr 11016 . . . . . . . 8 -∞ ∈ ℝ*
2524, 3, 53pm3.2i 1337 . . . . . . 7 (-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
26 mnflt 12841 . . . . . . . . 9 (-1 ∈ ℝ → -∞ < -1)
27 ltpnf 12838 . . . . . . . . 9 (-1 ∈ ℝ → -1 < +∞)
2826, 27jca 511 . . . . . . . 8 (-1 ∈ ℝ → (-∞ < -1 ∧ -1 < +∞))
292, 28ax-mp 5 . . . . . . 7 (-∞ < -1 ∧ -1 < +∞)
30 df-ioc 13066 . . . . . . . 8 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
31 xrltnle 11026 . . . . . . . 8 ((-1 ∈ ℝ*𝑤 ∈ ℝ*) → (-1 < 𝑤 ↔ ¬ 𝑤 ≤ -1))
32 xrlelttr 12872 . . . . . . . 8 ((𝑤 ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ -1 ∧ -1 < +∞) → 𝑤 < +∞))
33 xrlttr 12856 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < -1 ∧ -1 < 𝑤) → -∞ < 𝑤))
3430, 16, 31, 16, 32, 33ixxun 13077 . . . . . . 7 (((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < -1 ∧ -1 < +∞)) → ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞))
3525, 29, 34mp2an 688 . . . . . 6 ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞)
3623, 35eqtri 2767 . . . . 5 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = (-∞(,)+∞)
37 ioomax 13136 . . . . 5 (-∞(,)+∞) = ℝ
381, 36, 373eqtri 2771 . . . 4 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ℝ
3938difeq1i 4057 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
40 difun2 4419 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
41 ax-resscn 10912 . . . 4 ℝ ⊆ ℂ
42 difin2 4230 . . . 4 (ℝ ⊆ ℂ → (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ))
4341, 42ax-mp 5 . . 3 (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
4439, 40, 433eqtr3ri 2776 . 2 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
45 dvasin.d . . 3 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4645ineq1i 4147 . 2 (𝐷 ∩ ℝ) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
47 incom 4139 . . . . 5 ((-1(,)1) ∩ (-∞(,]-1)) = ((-∞(,]-1) ∩ (-1(,)1))
4830, 16, 31ixxdisj 13076 . . . . . 6 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((-∞(,]-1) ∩ (-1(,)1)) = ∅)
4924, 3, 4, 48mp3an 1459 . . . . 5 ((-∞(,]-1) ∩ (-1(,)1)) = ∅
5047, 49eqtri 2767 . . . 4 ((-1(,)1) ∩ (-∞(,]-1)) = ∅
5116, 17, 18ixxdisj 13076 . . . . 5 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-1(,)1) ∩ (1[,)+∞)) = ∅)
523, 4, 5, 51mp3an 1459 . . . 4 ((-1(,)1) ∩ (1[,)+∞)) = ∅
5350, 52pm3.2i 470 . . 3 (((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅)
54 un00 4381 . . . 4 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
55 indi 4212 . . . . 5 ((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞)))
5655eqeq1i 2744 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
57 disj3 4392 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5854, 56, 573bitr2i 298 . . 3 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5953, 58mpbi 229 . 2 (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
6044, 46, 593eqtr4i 2777 1 (𝐷 ∩ ℝ) = (-1(,)1)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1541  wcel 2109  cdif 3888  cun 3889  cin 3890  wss 3891  c0 4261   class class class wbr 5078  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855  1c1 10856  +∞cpnf 10990  -∞cmnf 10991  *cxr 10992   < clt 10993  cle 10994  -cneg 11189  (,)cioo 13061  (,]cioc 13062  [,)cico 13063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-ioo 13065  df-ioc 13066  df-ico 13067
This theorem is referenced by:  dvasin  35840  dvreasin  35842  dvreacos  35843
  Copyright terms: Public domain W3C validator