Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asindmre Structured version   Visualization version   GIF version

Theorem asindmre 37690
Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
asindmre (𝐷 ∩ ℝ) = (-1(,)1)

Proof of Theorem asindmre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 un12 4183 . . . . 5 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞)))
2 neg1rr 12379 . . . . . . . . . 10 -1 ∈ ℝ
32rexri 11317 . . . . . . . . 9 -1 ∈ ℝ*
4 1xr 11318 . . . . . . . . 9 1 ∈ ℝ*
5 pnfxr 11313 . . . . . . . . 9 +∞ ∈ ℝ*
63, 4, 53pm3.2i 1338 . . . . . . . 8 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
7 neg1lt0 12381 . . . . . . . . . 10 -1 < 0
8 0lt1 11783 . . . . . . . . . 10 0 < 1
9 0re 11261 . . . . . . . . . . 11 0 ∈ ℝ
10 1re 11259 . . . . . . . . . . 11 1 ∈ ℝ
112, 9, 10lttri 11385 . . . . . . . . . 10 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
127, 8, 11mp2an 692 . . . . . . . . 9 -1 < 1
13 ltpnf 13160 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
1410, 13ax-mp 5 . . . . . . . . 9 1 < +∞
1512, 14pm3.2i 470 . . . . . . . 8 (-1 < 1 ∧ 1 < +∞)
16 df-ioo 13388 . . . . . . . . 9 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
17 df-ico 13390 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
18 xrlenlt 11324 . . . . . . . . 9 ((1 ∈ ℝ*𝑤 ∈ ℝ*) → (1 ≤ 𝑤 ↔ ¬ 𝑤 < 1))
19 xrlttr 13179 . . . . . . . . 9 ((𝑤 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 1 ∧ 1 < +∞) → 𝑤 < +∞))
20 xrltletr 13196 . . . . . . . . 9 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-1 < 1 ∧ 1 ≤ 𝑤) → -1 < 𝑤))
2116, 17, 18, 16, 19, 20ixxun 13400 . . . . . . . 8 (((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-1 < 1 ∧ 1 < +∞)) → ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞))
226, 15, 21mp2an 692 . . . . . . 7 ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞)
2322uneq2i 4175 . . . . . 6 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ (-1(,)+∞))
24 mnfxr 11316 . . . . . . . 8 -∞ ∈ ℝ*
2524, 3, 53pm3.2i 1338 . . . . . . 7 (-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
26 mnflt 13163 . . . . . . . . 9 (-1 ∈ ℝ → -∞ < -1)
27 ltpnf 13160 . . . . . . . . 9 (-1 ∈ ℝ → -1 < +∞)
2826, 27jca 511 . . . . . . . 8 (-1 ∈ ℝ → (-∞ < -1 ∧ -1 < +∞))
292, 28ax-mp 5 . . . . . . 7 (-∞ < -1 ∧ -1 < +∞)
30 df-ioc 13389 . . . . . . . 8 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
31 xrltnle 11326 . . . . . . . 8 ((-1 ∈ ℝ*𝑤 ∈ ℝ*) → (-1 < 𝑤 ↔ ¬ 𝑤 ≤ -1))
32 xrlelttr 13195 . . . . . . . 8 ((𝑤 ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ -1 ∧ -1 < +∞) → 𝑤 < +∞))
33 xrlttr 13179 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < -1 ∧ -1 < 𝑤) → -∞ < 𝑤))
3430, 16, 31, 16, 32, 33ixxun 13400 . . . . . . 7 (((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < -1 ∧ -1 < +∞)) → ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞))
3525, 29, 34mp2an 692 . . . . . 6 ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞)
3623, 35eqtri 2763 . . . . 5 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = (-∞(,)+∞)
37 ioomax 13459 . . . . 5 (-∞(,)+∞) = ℝ
381, 36, 373eqtri 2767 . . . 4 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ℝ
3938difeq1i 4132 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
40 difun2 4487 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
41 ax-resscn 11210 . . . 4 ℝ ⊆ ℂ
42 difin2 4307 . . . 4 (ℝ ⊆ ℂ → (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ))
4341, 42ax-mp 5 . . 3 (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
4439, 40, 433eqtr3ri 2772 . 2 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
45 dvasin.d . . 3 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4645ineq1i 4224 . 2 (𝐷 ∩ ℝ) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
47 incom 4217 . . . . 5 ((-1(,)1) ∩ (-∞(,]-1)) = ((-∞(,]-1) ∩ (-1(,)1))
4830, 16, 31ixxdisj 13399 . . . . . 6 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((-∞(,]-1) ∩ (-1(,)1)) = ∅)
4924, 3, 4, 48mp3an 1460 . . . . 5 ((-∞(,]-1) ∩ (-1(,)1)) = ∅
5047, 49eqtri 2763 . . . 4 ((-1(,)1) ∩ (-∞(,]-1)) = ∅
5116, 17, 18ixxdisj 13399 . . . . 5 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-1(,)1) ∩ (1[,)+∞)) = ∅)
523, 4, 5, 51mp3an 1460 . . . 4 ((-1(,)1) ∩ (1[,)+∞)) = ∅
5350, 52pm3.2i 470 . . 3 (((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅)
54 un00 4451 . . . 4 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
55 indi 4290 . . . . 5 ((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞)))
5655eqeq1i 2740 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
57 disj3 4460 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5854, 56, 573bitr2i 299 . . 3 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5953, 58mpbi 230 . 2 (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
6044, 46, 593eqtr4i 2773 1 (𝐷 ∩ ℝ) = (-1(,)1)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wcel 2106  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  -cneg 11491  (,)cioo 13384  (,]cioc 13385  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-ioo 13388  df-ioc 13389  df-ico 13390
This theorem is referenced by:  dvasin  37691  dvreasin  37693  dvreacos  37694
  Copyright terms: Public domain W3C validator