Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asindmre Structured version   Visualization version   GIF version

Theorem asindmre 37702
Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
asindmre (𝐷 ∩ ℝ) = (-1(,)1)

Proof of Theorem asindmre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 un12 4126 . . . . 5 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞)))
2 neg1rr 12133 . . . . . . . . . 10 -1 ∈ ℝ
32rexri 11192 . . . . . . . . 9 -1 ∈ ℝ*
4 1xr 11193 . . . . . . . . 9 1 ∈ ℝ*
5 pnfxr 11188 . . . . . . . . 9 +∞ ∈ ℝ*
63, 4, 53pm3.2i 1340 . . . . . . . 8 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
7 neg1lt0 12135 . . . . . . . . . 10 -1 < 0
8 0lt1 11661 . . . . . . . . . 10 0 < 1
9 0re 11136 . . . . . . . . . . 11 0 ∈ ℝ
10 1re 11134 . . . . . . . . . . 11 1 ∈ ℝ
112, 9, 10lttri 11261 . . . . . . . . . 10 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
127, 8, 11mp2an 692 . . . . . . . . 9 -1 < 1
13 ltpnf 13041 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
1410, 13ax-mp 5 . . . . . . . . 9 1 < +∞
1512, 14pm3.2i 470 . . . . . . . 8 (-1 < 1 ∧ 1 < +∞)
16 df-ioo 13271 . . . . . . . . 9 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
17 df-ico 13273 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
18 xrlenlt 11199 . . . . . . . . 9 ((1 ∈ ℝ*𝑤 ∈ ℝ*) → (1 ≤ 𝑤 ↔ ¬ 𝑤 < 1))
19 xrlttr 13061 . . . . . . . . 9 ((𝑤 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 1 ∧ 1 < +∞) → 𝑤 < +∞))
20 xrltletr 13078 . . . . . . . . 9 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-1 < 1 ∧ 1 ≤ 𝑤) → -1 < 𝑤))
2116, 17, 18, 16, 19, 20ixxun 13283 . . . . . . . 8 (((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-1 < 1 ∧ 1 < +∞)) → ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞))
226, 15, 21mp2an 692 . . . . . . 7 ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞)
2322uneq2i 4118 . . . . . 6 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ (-1(,)+∞))
24 mnfxr 11191 . . . . . . . 8 -∞ ∈ ℝ*
2524, 3, 53pm3.2i 1340 . . . . . . 7 (-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
26 mnflt 13044 . . . . . . . . 9 (-1 ∈ ℝ → -∞ < -1)
27 ltpnf 13041 . . . . . . . . 9 (-1 ∈ ℝ → -1 < +∞)
2826, 27jca 511 . . . . . . . 8 (-1 ∈ ℝ → (-∞ < -1 ∧ -1 < +∞))
292, 28ax-mp 5 . . . . . . 7 (-∞ < -1 ∧ -1 < +∞)
30 df-ioc 13272 . . . . . . . 8 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
31 xrltnle 11201 . . . . . . . 8 ((-1 ∈ ℝ*𝑤 ∈ ℝ*) → (-1 < 𝑤 ↔ ¬ 𝑤 ≤ -1))
32 xrlelttr 13077 . . . . . . . 8 ((𝑤 ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ -1 ∧ -1 < +∞) → 𝑤 < +∞))
33 xrlttr 13061 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < -1 ∧ -1 < 𝑤) → -∞ < 𝑤))
3430, 16, 31, 16, 32, 33ixxun 13283 . . . . . . 7 (((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < -1 ∧ -1 < +∞)) → ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞))
3525, 29, 34mp2an 692 . . . . . 6 ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞)
3623, 35eqtri 2752 . . . . 5 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = (-∞(,)+∞)
37 ioomax 13344 . . . . 5 (-∞(,)+∞) = ℝ
381, 36, 373eqtri 2756 . . . 4 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ℝ
3938difeq1i 4075 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
40 difun2 4434 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
41 ax-resscn 11085 . . . 4 ℝ ⊆ ℂ
42 difin2 4254 . . . 4 (ℝ ⊆ ℂ → (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ))
4341, 42ax-mp 5 . . 3 (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
4439, 40, 433eqtr3ri 2761 . 2 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
45 dvasin.d . . 3 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4645ineq1i 4169 . 2 (𝐷 ∩ ℝ) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
47 incom 4162 . . . . 5 ((-1(,)1) ∩ (-∞(,]-1)) = ((-∞(,]-1) ∩ (-1(,)1))
4830, 16, 31ixxdisj 13282 . . . . . 6 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((-∞(,]-1) ∩ (-1(,)1)) = ∅)
4924, 3, 4, 48mp3an 1463 . . . . 5 ((-∞(,]-1) ∩ (-1(,)1)) = ∅
5047, 49eqtri 2752 . . . 4 ((-1(,)1) ∩ (-∞(,]-1)) = ∅
5116, 17, 18ixxdisj 13282 . . . . 5 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-1(,)1) ∩ (1[,)+∞)) = ∅)
523, 4, 5, 51mp3an 1463 . . . 4 ((-1(,)1) ∩ (1[,)+∞)) = ∅
5350, 52pm3.2i 470 . . 3 (((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅)
54 un00 4398 . . . 4 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
55 indi 4237 . . . . 5 ((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞)))
5655eqeq1i 2734 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
57 disj3 4407 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5854, 56, 573bitr2i 299 . . 3 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5953, 58mpbi 230 . 2 (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
6044, 46, 593eqtr4i 2762 1 (𝐷 ∩ ℝ) = (-1(,)1)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  -cneg 11367  (,)cioo 13267  (,]cioc 13268  [,)cico 13269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-ioo 13271  df-ioc 13272  df-ico 13273
This theorem is referenced by:  dvasin  37703  dvreasin  37705  dvreacos  37706
  Copyright terms: Public domain W3C validator