Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asindmre Structured version   Visualization version   GIF version

Theorem asindmre 33983
Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
asindmre (𝐷 ∩ ℝ) = (-1(,)1)

Proof of Theorem asindmre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 un12 3969 . . . . 5 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞)))
2 neg1rr 11435 . . . . . . . . . 10 -1 ∈ ℝ
32rexri 10387 . . . . . . . . 9 -1 ∈ ℝ*
4 1re 10328 . . . . . . . . . 10 1 ∈ ℝ
54rexri 10387 . . . . . . . . 9 1 ∈ ℝ*
6 pnfxr 10382 . . . . . . . . 9 +∞ ∈ ℝ*
73, 5, 63pm3.2i 1439 . . . . . . . 8 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
8 neg1lt0 11437 . . . . . . . . . 10 -1 < 0
9 0lt1 10842 . . . . . . . . . 10 0 < 1
10 0re 10330 . . . . . . . . . . 11 0 ∈ ℝ
112, 10, 4lttri 10453 . . . . . . . . . 10 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
128, 9, 11mp2an 684 . . . . . . . . 9 -1 < 1
13 ltpnf 12201 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
144, 13ax-mp 5 . . . . . . . . 9 1 < +∞
1512, 14pm3.2i 463 . . . . . . . 8 (-1 < 1 ∧ 1 < +∞)
16 df-ioo 12428 . . . . . . . . 9 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
17 df-ico 12430 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
18 xrlenlt 10393 . . . . . . . . 9 ((1 ∈ ℝ*𝑤 ∈ ℝ*) → (1 ≤ 𝑤 ↔ ¬ 𝑤 < 1))
19 xrlttr 12220 . . . . . . . . 9 ((𝑤 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 1 ∧ 1 < +∞) → 𝑤 < +∞))
20 xrltletr 12237 . . . . . . . . 9 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-1 < 1 ∧ 1 ≤ 𝑤) → -1 < 𝑤))
2116, 17, 18, 16, 19, 20ixxun 12440 . . . . . . . 8 (((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-1 < 1 ∧ 1 < +∞)) → ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞))
227, 15, 21mp2an 684 . . . . . . 7 ((-1(,)1) ∪ (1[,)+∞)) = (-1(,)+∞)
2322uneq2i 3962 . . . . . 6 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = ((-∞(,]-1) ∪ (-1(,)+∞))
24 mnfxr 10386 . . . . . . . 8 -∞ ∈ ℝ*
2524, 3, 63pm3.2i 1439 . . . . . . 7 (-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*)
26 mnflt 12204 . . . . . . . . 9 (-1 ∈ ℝ → -∞ < -1)
27 ltpnf 12201 . . . . . . . . 9 (-1 ∈ ℝ → -1 < +∞)
2826, 27jca 508 . . . . . . . 8 (-1 ∈ ℝ → (-∞ < -1 ∧ -1 < +∞))
292, 28ax-mp 5 . . . . . . 7 (-∞ < -1 ∧ -1 < +∞)
30 df-ioc 12429 . . . . . . . 8 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
31 xrltnle 10395 . . . . . . . 8 ((-1 ∈ ℝ*𝑤 ∈ ℝ*) → (-1 < 𝑤 ↔ ¬ 𝑤 ≤ -1))
32 xrlelttr 12236 . . . . . . . 8 ((𝑤 ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ -1 ∧ -1 < +∞) → 𝑤 < +∞))
33 xrlttr 12220 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < -1 ∧ -1 < 𝑤) → -∞ < 𝑤))
3430, 16, 31, 16, 32, 33ixxun 12440 . . . . . . 7 (((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < -1 ∧ -1 < +∞)) → ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞))
3525, 29, 34mp2an 684 . . . . . 6 ((-∞(,]-1) ∪ (-1(,)+∞)) = (-∞(,)+∞)
3623, 35eqtri 2821 . . . . 5 ((-∞(,]-1) ∪ ((-1(,)1) ∪ (1[,)+∞))) = (-∞(,)+∞)
37 ioomax 12497 . . . . 5 (-∞(,)+∞) = ℝ
381, 36, 373eqtri 2825 . . . 4 ((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) = ℝ
3938difeq1i 3922 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
40 difun2 4242 . . 3 (((-1(,)1) ∪ ((-∞(,]-1) ∪ (1[,)+∞))) ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
41 ax-resscn 10281 . . . 4 ℝ ⊆ ℂ
42 difin2 4090 . . . 4 (ℝ ⊆ ℂ → (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ))
4341, 42ax-mp 5 . . 3 (ℝ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
4439, 40, 433eqtr3ri 2830 . 2 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
45 dvasin.d . . 3 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4645ineq1i 4008 . 2 (𝐷 ∩ ℝ) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
47 incom 4003 . . . . 5 ((-1(,)1) ∩ (-∞(,]-1)) = ((-∞(,]-1) ∩ (-1(,)1))
4830, 16, 31ixxdisj 12439 . . . . . 6 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((-∞(,]-1) ∩ (-1(,)1)) = ∅)
4924, 3, 5, 48mp3an 1586 . . . . 5 ((-∞(,]-1) ∩ (-1(,)1)) = ∅
5047, 49eqtri 2821 . . . 4 ((-1(,)1) ∩ (-∞(,]-1)) = ∅
5116, 17, 18ixxdisj 12439 . . . . 5 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-1(,)1) ∩ (1[,)+∞)) = ∅)
523, 5, 6, 51mp3an 1586 . . . 4 ((-1(,)1) ∩ (1[,)+∞)) = ∅
5350, 52pm3.2i 463 . . 3 (((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅)
54 un00 4207 . . . 4 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
55 indi 4074 . . . . 5 ((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞)))
5655eqeq1i 2804 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (((-1(,)1) ∩ (-∞(,]-1)) ∪ ((-1(,)1) ∩ (1[,)+∞))) = ∅)
57 disj3 4216 . . . 4 (((-1(,)1) ∩ ((-∞(,]-1) ∪ (1[,)+∞))) = ∅ ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5854, 56, 573bitr2i 291 . . 3 ((((-1(,)1) ∩ (-∞(,]-1)) = ∅ ∧ ((-1(,)1) ∩ (1[,)+∞)) = ∅) ↔ (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞))))
5953, 58mpbi 222 . 2 (-1(,)1) = ((-1(,)1) ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
6044, 46, 593eqtr4i 2831 1 (𝐷 ∩ ℝ) = (-1(,)1)
Colors of variables: wff setvar class
Syntax hints:  wa 385  w3a 1108   = wceq 1653  wcel 2157  cdif 3766  cun 3767  cin 3768  wss 3769  c0 4115   class class class wbr 4843  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224  1c1 10225  +∞cpnf 10360  -∞cmnf 10361  *cxr 10362   < clt 10363  cle 10364  -cneg 10557  (,)cioo 12424  (,]cioc 12425  [,)cico 12426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-ioo 12428  df-ioc 12429  df-ico 12430
This theorem is referenced by:  dvasin  33984  dvreasin  33986  dvreacos  33987
  Copyright terms: Public domain W3C validator