Step | Hyp | Ref
| Expression |
1 | | uneq2 4087 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 ∪ 𝑥) = (𝐴 ∪ ∅)) |
2 | 1 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐴 ∪ 𝑥) ∈ Fin ↔ (𝐴 ∪ ∅) ∈
Fin)) |
3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ∈ Fin → (𝐴 ∪ 𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ ∅) ∈
Fin))) |
4 | | uneq2 4087 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 ∪ 𝑥) = (𝐴 ∪ 𝑦)) |
5 | 4 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 ∪ 𝑥) ∈ Fin ↔ (𝐴 ∪ 𝑦) ∈ Fin)) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (𝐴 ∪ 𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ 𝑦) ∈ Fin))) |
7 | | uneq2 4087 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴 ∪ 𝑥) = (𝐴 ∪ (𝑦 ∪ {𝑧}))) |
8 | 7 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∪ 𝑥) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)) |
9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (𝐴 ∪ 𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))) |
10 | | uneq2 4087 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 ∪ 𝑥) = (𝐴 ∪ 𝐵)) |
11 | 10 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝐴 ∪ 𝑥) ∈ Fin ↔ (𝐴 ∪ 𝐵) ∈ Fin)) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (𝐴 ∪ 𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ 𝐵) ∈ Fin))) |
13 | | un0 4321 |
. . . . 5
⊢ (𝐴 ∪ ∅) = 𝐴 |
14 | 13 | eleq1i 2829 |
. . . 4
⊢ ((𝐴 ∪ ∅) ∈ Fin
↔ 𝐴 ∈
Fin) |
15 | 14 | biimpri 227 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 ∪ ∅) ∈
Fin) |
16 | | snssi 4738 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 → {𝑧} ⊆ 𝐴) |
17 | | ssequn2 4113 |
. . . . . . . . . . . . . 14
⊢ ({𝑧} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑧}) = 𝐴) |
18 | 17 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ ({𝑧} ⊆ 𝐴 → (𝐴 ∪ {𝑧}) = 𝐴) |
19 | 18 | uneq2d 4093 |
. . . . . . . . . . . 12
⊢ ({𝑧} ⊆ 𝐴 → (𝑦 ∪ (𝐴 ∪ {𝑧})) = (𝑦 ∪ 𝐴)) |
20 | | un12 4097 |
. . . . . . . . . . . 12
⊢ (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝑦 ∪ (𝐴 ∪ {𝑧})) |
21 | | uncom 4083 |
. . . . . . . . . . . 12
⊢ (𝐴 ∪ 𝑦) = (𝑦 ∪ 𝐴) |
22 | 19, 20, 21 | 3eqtr4g 2804 |
. . . . . . . . . . 11
⊢ ({𝑧} ⊆ 𝐴 → (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝐴 ∪ 𝑦)) |
23 | 16, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 → (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝐴 ∪ 𝑦)) |
24 | 23 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin ↔ (𝐴 ∪ 𝑦) ∈ Fin)) |
25 | 24 | biimprd 247 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → ((𝐴 ∪ 𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)) |
26 | 25 | adantld 490 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → ((¬ 𝑧 ∈ 𝑦 ∧ (𝐴 ∪ 𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)) |
27 | | isfi 8719 |
. . . . . . . . . . 11
⊢ ((𝐴 ∪ 𝑦) ∈ Fin ↔ ∃𝑤 ∈ ω (𝐴 ∪ 𝑦) ≈ 𝑤) |
28 | 27 | biimpi 215 |
. . . . . . . . . 10
⊢ ((𝐴 ∪ 𝑦) ∈ Fin → ∃𝑤 ∈ ω (𝐴 ∪ 𝑦) ≈ 𝑤) |
29 | | r19.41v 3273 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈
ω ((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) ↔ (∃𝑤 ∈ ω (𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦))) |
30 | | disjsn 4644 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∪ 𝑦) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝐴 ∪ 𝑦)) |
31 | | elun 4079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (𝐴 ∪ 𝑦) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦)) |
32 | 31 | notbii 319 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑧 ∈ (𝐴 ∪ 𝑦) ↔ ¬ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦)) |
33 | | pm4.56 985 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦) ↔ ¬ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦)) |
34 | 32, 33 | bitr4i 277 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑧 ∈ (𝐴 ∪ 𝑦) ↔ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) |
35 | 30, 34 | sylbbr 235 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝐴 ∪ 𝑦) ∩ {𝑧}) = ∅) |
36 | | nnord 7695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ω → Ord 𝑤) |
37 | | orddisj 6289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑤 → (𝑤 ∩ {𝑤}) = ∅) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ω → (𝑤 ∩ {𝑤}) = ∅) |
39 | | en2sn 8785 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → {𝑧} ≈ {𝑤}) |
40 | 39 | el2v 3430 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑧} ≈ {𝑤} |
41 | | unen 8790 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ {𝑧} ≈ {𝑤}) ∧ (((𝐴 ∪ 𝑦) ∩ {𝑧}) = ∅ ∧ (𝑤 ∩ {𝑤}) = ∅)) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
42 | 40, 41 | mpanl2 697 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (((𝐴 ∪ 𝑦) ∩ {𝑧}) = ∅ ∧ (𝑤 ∩ {𝑤}) = ∅)) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
43 | 38, 42 | sylanr2 679 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (((𝐴 ∪ 𝑦) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ ω)) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
44 | 35, 43 | sylanr1 678 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ ((¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑤 ∈ ω)) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
45 | 44 | 3impb 1113 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑤 ∈ ω) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
46 | 45 | 3comr 1123 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ω ∧ (𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
47 | 46 | 3expb 1118 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ω ∧ ((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) |
48 | | unass 4096 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∪ 𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧})) |
49 | | df-suc 6257 |
. . . . . . . . . . . . . . . . 17
⊢ suc 𝑤 = (𝑤 ∪ {𝑤}) |
50 | | peano2 7711 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ω → suc 𝑤 ∈
ω) |
51 | 49, 50 | eqeltrrid 2844 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ω → (𝑤 ∪ {𝑤}) ∈ ω) |
52 | | breq2 5074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑤 ∪ {𝑤}) → (((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ 𝑣 ↔ ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))) |
53 | 52 | rspcev 3552 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∪ {𝑤}) ∈ ω ∧ ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ∃𝑣 ∈ ω ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ 𝑣) |
54 | 51, 53 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ω ∧ ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ∃𝑣 ∈ ω ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ 𝑣) |
55 | | isfi 8719 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∪ 𝑦) ∪ {𝑧}) ∈ Fin ↔ ∃𝑣 ∈ ω ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ 𝑣) |
56 | 54, 55 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ω ∧ ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ∈ Fin) |
57 | 48, 56 | eqeltrrid 2844 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ω ∧ ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
58 | 47, 57 | syldan 590 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ω ∧ ((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
59 | 58 | rexlimiva 3209 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈
ω ((𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
60 | 29, 59 | sylbir 234 |
. . . . . . . . . 10
⊢
((∃𝑤 ∈
ω (𝐴 ∪ 𝑦) ≈ 𝑤 ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
61 | 28, 60 | sylan 579 |
. . . . . . . . 9
⊢ (((𝐴 ∪ 𝑦) ∈ Fin ∧ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
62 | 61 | ancoms 458 |
. . . . . . . 8
⊢ (((¬
𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐴 ∪ 𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
63 | 62 | expl 457 |
. . . . . . 7
⊢ (¬
𝑧 ∈ 𝐴 → ((¬ 𝑧 ∈ 𝑦 ∧ (𝐴 ∪ 𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)) |
64 | 26, 63 | pm2.61i 182 |
. . . . . 6
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝐴 ∪ 𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin) |
65 | 64 | ex 412 |
. . . . 5
⊢ (¬
𝑧 ∈ 𝑦 → ((𝐴 ∪ 𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)) |
66 | 65 | imim2d 57 |
. . . 4
⊢ (¬
𝑧 ∈ 𝑦 → ((𝐴 ∈ Fin → (𝐴 ∪ 𝑦) ∈ Fin) → (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))) |
67 | 66 | adantl 481 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝐴 ∈ Fin → (𝐴 ∪ 𝑦) ∈ Fin) → (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))) |
68 | 3, 6, 9, 12, 15, 67 | findcard2s 8910 |
. 2
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin → (𝐴 ∪ 𝐵) ∈ Fin)) |
69 | 68 | impcom 407 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |