![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unfi | Structured version Visualization version GIF version |
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) |
Ref | Expression |
---|---|
unfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi 8603 | . 2 ⊢ (𝐵 ∈ Fin → (𝐵 ∖ 𝐴) ∈ Fin) | |
2 | reeanv 3330 | . . . 4 ⊢ (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) ↔ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ∧ ∃𝑦 ∈ ω (𝐵 ∖ 𝐴) ≈ 𝑦)) | |
3 | isfi 8388 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
4 | isfi 8388 | . . . . 5 ⊢ ((𝐵 ∖ 𝐴) ∈ Fin ↔ ∃𝑦 ∈ ω (𝐵 ∖ 𝐴) ≈ 𝑦) | |
5 | 3, 4 | anbi12i 626 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) ↔ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ∧ ∃𝑦 ∈ ω (𝐵 ∖ 𝐴) ≈ 𝑦)) |
6 | 2, 5 | bitr4i 279 | . . 3 ⊢ (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) ↔ (𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin)) |
7 | nnacl 8094 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +o 𝑦) ∈ ω) | |
8 | unfilem3 8637 | . . . . . . 7 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) | |
9 | entr 8416 | . . . . . . . 8 ⊢ (((𝐵 ∖ 𝐴) ≈ 𝑦 ∧ 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) | |
10 | 9 | expcom 414 | . . . . . . 7 ⊢ (𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥) → ((𝐵 ∖ 𝐴) ≈ 𝑦 → (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))) |
11 | 8, 10 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐵 ∖ 𝐴) ≈ 𝑦 → (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))) |
12 | disjdif 4341 | . . . . . . . 8 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
13 | disjdif 4341 | . . . . . . . 8 ⊢ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅ | |
14 | unen 8451 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) ∧ ((𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ ∧ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅)) → (𝐴 ∪ (𝐵 ∖ 𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥))) | |
15 | 12, 13, 14 | mpanr12 701 | . . . . . . 7 ⊢ ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ (𝐵 ∖ 𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥))) |
16 | undif2 4345 | . . . . . . . . 9 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵)) |
18 | nnaword1 8112 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑥 ⊆ (𝑥 +o 𝑦)) | |
19 | undif 4350 | . . . . . . . . 9 ⊢ (𝑥 ⊆ (𝑥 +o 𝑦) ↔ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦)) | |
20 | 18, 19 | sylib 219 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦)) |
21 | 17, 20 | breq12d 4981 | . . . . . . 7 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∪ (𝐵 ∖ 𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) ↔ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
22 | 15, 21 | syl5ib 245 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
23 | 11, 22 | sylan2d 604 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) → (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
24 | breq2 4972 | . . . . . . 7 ⊢ (𝑧 = (𝑥 +o 𝑦) → ((𝐴 ∪ 𝐵) ≈ 𝑧 ↔ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) | |
25 | 24 | rspcev 3561 | . . . . . 6 ⊢ (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦)) → ∃𝑧 ∈ ω (𝐴 ∪ 𝐵) ≈ 𝑧) |
26 | isfi 8388 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ ∃𝑧 ∈ ω (𝐴 ∪ 𝐵) ≈ 𝑧) | |
27 | 25, 26 | sylibr 235 | . . . . 5 ⊢ (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦)) → (𝐴 ∪ 𝐵) ∈ Fin) |
28 | 7, 23, 27 | syl6an 680 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) → (𝐴 ∪ 𝐵) ∈ Fin)) |
29 | 28 | rexlimivv 3257 | . . 3 ⊢ (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) → (𝐴 ∪ 𝐵) ∈ Fin) |
30 | 6, 29 | sylbir 236 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |
31 | 1, 30 | sylan2 592 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 ∖ cdif 3862 ∪ cun 3863 ∩ cin 3864 ⊆ wss 3865 ∅c0 4217 class class class wbr 4968 (class class class)co 7023 ωcom 7443 +o coa 7957 ≈ cen 8361 Fincfn 8364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-oadd 7964 df-er 8146 df-en 8365 df-fin 8368 |
This theorem is referenced by: unfi2 8640 difinf 8641 xpfi 8642 prfi 8646 tpfi 8647 fnfi 8649 iunfi 8665 pwfilem 8671 fsuppun 8705 fsuppunfi 8706 ressuppfi 8712 fiin 8739 cantnfp1lem1 8994 ficardun2 9478 ackbij1lem6 9500 ackbij1lem16 9510 fin23lem28 9615 fin23lem30 9617 isfin1-3 9661 axcclem 9732 hashun 13595 hashunlei 13638 hashmap 13648 hashbclem 13662 hashf1lem1 13665 hashf1lem2 13666 hashf1 13667 fsumsplitsn 14937 fsummsnunz 14946 fsumsplitsnun 14947 incexclem 15028 isumltss 15040 fprodsplitsn 15180 lcmfunsnlem2lem1 15815 lcmfunsnlem2lem2 15816 lcmfunsnlem2 15817 lcmfun 15822 ramub1lem1 16195 fpwipodrs 17607 acsfiindd 17620 symgfisg 18331 gsumzunsnd 18800 gsumunsnfd 18801 psrbagaddcl 19842 mplsubg 19909 mpllss 19910 dsmmacl 20571 fctop 21300 uncmp 21699 bwth 21706 lfinun 21821 locfincmp 21822 comppfsc 21828 1stckgenlem 21849 ptbasin 21873 cfinfil 22189 fin1aufil 22228 alexsubALTlem3 22345 tmdgsum 22391 tsmsfbas 22423 tsmsgsum 22434 tsmsres 22439 tsmsxplem1 22448 prdsmet 22667 prdsbl 22788 icccmplem2 23118 rrxmval 23695 rrxmet 23698 rrxdstprj1 23699 ovolfiniun 23789 volfiniun 23835 fta1glem2 24447 fta1lem 24583 aannenlem2 24605 aalioulem2 24609 dchrfi 25517 usgrfilem 26796 ffsrn 30149 eulerpartlemt 31242 ballotlemgun 31395 hgt750lemb 31540 hgt750leme 31542 lindsenlbs 34439 poimirlem31 34475 poimirlem32 34476 itg2addnclem2 34496 ftc1anclem7 34525 ftc1anc 34527 prdsbnd 34624 pclfinN 36588 elrfi 38797 mzpcompact2lem 38854 eldioph2 38865 lsmfgcl 39180 fiuneneq 39303 unfid 40982 dvmptfprodlem 41792 dvnprodlem2 41795 fourierdlem50 42005 fourierdlem51 42006 fourierdlem54 42009 fourierdlem76 42031 fourierdlem80 42035 fourierdlem102 42057 fourierdlem103 42058 fourierdlem104 42059 fourierdlem114 42069 sge0resplit 42252 sge0iunmptlemfi 42259 sge0xaddlem1 42279 hoiprodp1 42434 sge0hsphoire 42435 hoidmvlelem1 42441 hoidmvlelem2 42442 hoidmvlelem5 42445 hspmbllem2 42473 fsummmodsnunz 43073 mndpsuppfi 43925 |
Copyright terms: Public domain | W3C validator |