MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfi Structured version   Visualization version   GIF version

Theorem unfi 9238
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Aug-2024.)
Assertion
Ref Expression
unfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfi
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 4185 . . . . 5 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∪ ∅))
21eleq1d 2829 . . . 4 (𝑥 = ∅ → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∪ ∅) ∈ Fin))
32imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ ∅) ∈ Fin)))
4 uneq2 4185 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
54eleq1d 2829 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴𝑦) ∈ Fin)))
7 uneq2 4185 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ∪ (𝑦 ∪ {𝑧})))
87eleq1d 2829 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
98imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)))
10 uneq2 4185 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1110eleq1d 2829 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)))
13 un0 4417 . . . . 5 (𝐴 ∪ ∅) = 𝐴
1413eleq1i 2835 . . . 4 ((𝐴 ∪ ∅) ∈ Fin ↔ 𝐴 ∈ Fin)
1514biimpri 228 . . 3 (𝐴 ∈ Fin → (𝐴 ∪ ∅) ∈ Fin)
16 snssi 4833 . . . . . . . . . . 11 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
17 ssequn2 4212 . . . . . . . . . . . . . 14 ({𝑧} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑧}) = 𝐴)
1817biimpi 216 . . . . . . . . . . . . 13 ({𝑧} ⊆ 𝐴 → (𝐴 ∪ {𝑧}) = 𝐴)
1918uneq2d 4191 . . . . . . . . . . . 12 ({𝑧} ⊆ 𝐴 → (𝑦 ∪ (𝐴 ∪ {𝑧})) = (𝑦𝐴))
20 un12 4196 . . . . . . . . . . . 12 (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝑦 ∪ (𝐴 ∪ {𝑧}))
21 uncom 4181 . . . . . . . . . . . 12 (𝐴𝑦) = (𝑦𝐴)
2219, 20, 213eqtr4g 2805 . . . . . . . . . . 11 ({𝑧} ⊆ 𝐴 → (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝐴𝑦))
2316, 22syl 17 . . . . . . . . . 10 (𝑧𝐴 → (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝐴𝑦))
2423eleq1d 2829 . . . . . . . . 9 (𝑧𝐴 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
2524biimprd 248 . . . . . . . 8 (𝑧𝐴 → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
2625adantld 490 . . . . . . 7 (𝑧𝐴 → ((¬ 𝑧𝑦 ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
27 isfi 9036 . . . . . . . . . . 11 ((𝐴𝑦) ∈ Fin ↔ ∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤)
2827biimpi 216 . . . . . . . . . 10 ((𝐴𝑦) ∈ Fin → ∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤)
29 r19.41v 3195 . . . . . . . . . . 11 (∃𝑤 ∈ ω ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) ↔ (∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)))
30 disjsn 4736 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝐴𝑦))
31 elun 4176 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴𝑧𝑦))
3231notbii 320 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (𝐴𝑦) ↔ ¬ (𝑧𝐴𝑧𝑦))
33 pm4.56 989 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ↔ ¬ (𝑧𝐴𝑧𝑦))
3432, 33bitr4i 278 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ (𝐴𝑦) ↔ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))
3530, 34sylbbr 236 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) → ((𝐴𝑦) ∩ {𝑧}) = ∅)
36 nnord 7911 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ω → Ord 𝑤)
37 orddisj 6433 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑤 → (𝑤 ∩ {𝑤}) = ∅)
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ω → (𝑤 ∩ {𝑤}) = ∅)
39 en2sn 9106 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → {𝑧} ≈ {𝑤})
4039el2v 3495 . . . . . . . . . . . . . . . . . . 19 {𝑧} ≈ {𝑤}
41 unen 9112 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑦) ≈ 𝑤 ∧ {𝑧} ≈ {𝑤}) ∧ (((𝐴𝑦) ∩ {𝑧}) = ∅ ∧ (𝑤 ∩ {𝑤}) = ∅)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
4240, 41mpanl2 700 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ≈ 𝑤 ∧ (((𝐴𝑦) ∩ {𝑧}) = ∅ ∧ (𝑤 ∩ {𝑤}) = ∅)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
4338, 42sylanr2 682 . . . . . . . . . . . . . . . . 17 (((𝐴𝑦) ≈ 𝑤 ∧ (((𝐴𝑦) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ ω)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
4435, 43sylanr1 681 . . . . . . . . . . . . . . . 16 (((𝐴𝑦) ≈ 𝑤 ∧ ((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ∧ 𝑤 ∈ ω)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
45443impb 1115 . . . . . . . . . . . . . . 15 (((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ∧ 𝑤 ∈ ω) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
46453comr 1125 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ (𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
47463expb 1120 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
48 unass 4195 . . . . . . . . . . . . . 14 ((𝐴𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))
49 df-suc 6401 . . . . . . . . . . . . . . . . 17 suc 𝑤 = (𝑤 ∪ {𝑤})
50 peano2 7929 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ω → suc 𝑤 ∈ ω)
5149, 50eqeltrrid 2849 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ω → (𝑤 ∪ {𝑤}) ∈ ω)
52 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑤 ∪ {𝑤}) → (((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣 ↔ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})))
5352rspcev 3635 . . . . . . . . . . . . . . . 16 (((𝑤 ∪ {𝑤}) ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ∃𝑣 ∈ ω ((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣)
5451, 53sylan 579 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ∃𝑣 ∈ ω ((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣)
55 isfi 9036 . . . . . . . . . . . . . . 15 (((𝐴𝑦) ∪ {𝑧}) ∈ Fin ↔ ∃𝑣 ∈ ω ((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣)
5654, 55sylibr 234 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
5748, 56eqeltrrid 2849 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
5847, 57syldan 590 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
5958rexlimiva 3153 . . . . . . . . . . 11 (∃𝑤 ∈ ω ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6029, 59sylbir 235 . . . . . . . . . 10 ((∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6128, 60sylan 579 . . . . . . . . 9 (((𝐴𝑦) ∈ Fin ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6261ancoms 458 . . . . . . . 8 (((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6362expl 457 . . . . . . 7 𝑧𝐴 → ((¬ 𝑧𝑦 ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
6426, 63pm2.61i 182 . . . . . 6 ((¬ 𝑧𝑦 ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6564ex 412 . . . . 5 𝑧𝑦 → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
6665imim2d 57 . . . 4 𝑧𝑦 → ((𝐴 ∈ Fin → (𝐴𝑦) ∈ Fin) → (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)))
6766adantl 481 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐴 ∈ Fin → (𝐴𝑦) ∈ Fin) → (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)))
683, 6, 9, 12, 15, 67findcard2s 9231 . 2 (𝐵 ∈ Fin → (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin))
6968impcom 407 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  Ord word 6394  suc csuc 6397  ωcom 7903  cen 9000  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-en 9004  df-fin 9007
This theorem is referenced by:  unfid  9239  ssfi  9240  cnvfi  9243  fnfi  9244  unfib  9375  unfi2  9376  difinf  9377  imafiOLD  9382  pwfilem  9384  xpfi  9386  xpfiOLD  9387  prfiALT  9392  tpfi  9393  fodomfir  9396  iunfi  9411  pwfilemOLD  9416  fsuppun  9456  fsuppunfi  9457  ressuppfi  9464  fiin  9491  cantnfp1lem1  9747  ficardadju  10269  ficardun2  10271  ackbij1lem6  10293  ackbij1lem16  10303  fin23lem28  10409  fin23lem30  10411  isfin1-3  10455  axcclem  10526  hashun  14431  hashunlei  14474  hashmap  14484  hashbclem  14501  hashf1lem2  14505  hashf1  14506  hash7g  14535  s7f1o  15015  fsumsplitsn  15792  fsummsnunz  15802  fsumsplitsnun  15803  incexclem  15884  isumltss  15896  fprodsplitsn  16037  lcmfunsnlem2lem1  16685  lcmfunsnlem2lem2  16686  lcmfunsnlem2  16687  lcmfun  16692  ramub1lem1  17073  fpwipodrs  18610  acsfiindd  18623  symgfisg  19510  gsumzunsnd  19998  gsumunsnfd  19999  dsmmacl  21784  mplsubg  22045  mpllss  22046  fctop  23032  uncmp  23432  bwth  23439  lfinun  23554  locfincmp  23555  comppfsc  23561  1stckgenlem  23582  ptbasin  23606  cfinfil  23922  fin1aufil  23961  alexsubALTlem3  24078  tmdgsum  24124  tsmsfbas  24157  tsmsgsum  24168  tsmsres  24173  tsmsxplem1  24182  prdsmet  24401  prdsbl  24525  icccmplem2  24864  rrxmval  25458  rrxmet  25461  rrxdstprj1  25462  ovolfiniun  25555  volfiniun  25601  fta1glem2  26228  fta1lem  26367  aannenlem2  26389  aalioulem2  26393  dchrfi  27317  usgrfilem  29362  ffsrn  32743  eulerpartlemt  34336  ballotlemgun  34489  hgt750lemb  34633  hgt750leme  34635  lindsenlbs  37575  poimirlem31  37611  poimirlem32  37612  itg2addnclem2  37632  ftc1anclem7  37659  ftc1anc  37661  prdsbnd  37753  pclfinN  39857  elrfi  42650  mzpcompact2lem  42707  eldioph2  42718  lsmfgcl  43031  fiuneneq  43153  dvmptfprodlem  45865  dvnprodlem2  45868  fourierdlem50  46077  fourierdlem51  46078  fourierdlem54  46081  fourierdlem76  46103  fourierdlem80  46107  fourierdlem102  46129  fourierdlem103  46130  fourierdlem104  46131  fourierdlem114  46141  sge0resplit  46327  sge0iunmptlemfi  46334  sge0xaddlem1  46354  hoiprodp1  46509  sge0hsphoire  46510  hoidmvlelem1  46516  hoidmvlelem2  46517  hoidmvlelem5  46520  hspmbllem2  46548  fsummmodsnunz  47249  mndpsuppfi  48100
  Copyright terms: Public domain W3C validator