MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfi Structured version   Visualization version   GIF version

Theorem unfi 9174
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5363. (Revised by BTernaryTau, 7-Aug-2024.)
Assertion
Ref Expression
unfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfi
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 4157 . . . . 5 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∪ ∅))
21eleq1d 2818 . . . 4 (𝑥 = ∅ → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∪ ∅) ∈ Fin))
32imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ ∅) ∈ Fin)))
4 uneq2 4157 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
54eleq1d 2818 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴𝑦) ∈ Fin)))
7 uneq2 4157 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ∪ (𝑦 ∪ {𝑧})))
87eleq1d 2818 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
98imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)))
10 uneq2 4157 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1110eleq1d 2818 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin) ↔ (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)))
13 un0 4390 . . . . 5 (𝐴 ∪ ∅) = 𝐴
1413eleq1i 2824 . . . 4 ((𝐴 ∪ ∅) ∈ Fin ↔ 𝐴 ∈ Fin)
1514biimpri 227 . . 3 (𝐴 ∈ Fin → (𝐴 ∪ ∅) ∈ Fin)
16 snssi 4811 . . . . . . . . . . 11 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
17 ssequn2 4183 . . . . . . . . . . . . . 14 ({𝑧} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑧}) = 𝐴)
1817biimpi 215 . . . . . . . . . . . . 13 ({𝑧} ⊆ 𝐴 → (𝐴 ∪ {𝑧}) = 𝐴)
1918uneq2d 4163 . . . . . . . . . . . 12 ({𝑧} ⊆ 𝐴 → (𝑦 ∪ (𝐴 ∪ {𝑧})) = (𝑦𝐴))
20 un12 4167 . . . . . . . . . . . 12 (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝑦 ∪ (𝐴 ∪ {𝑧}))
21 uncom 4153 . . . . . . . . . . . 12 (𝐴𝑦) = (𝑦𝐴)
2219, 20, 213eqtr4g 2797 . . . . . . . . . . 11 ({𝑧} ⊆ 𝐴 → (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝐴𝑦))
2316, 22syl 17 . . . . . . . . . 10 (𝑧𝐴 → (𝐴 ∪ (𝑦 ∪ {𝑧})) = (𝐴𝑦))
2423eleq1d 2818 . . . . . . . . 9 (𝑧𝐴 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
2524biimprd 247 . . . . . . . 8 (𝑧𝐴 → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
2625adantld 491 . . . . . . 7 (𝑧𝐴 → ((¬ 𝑧𝑦 ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
27 isfi 8974 . . . . . . . . . . 11 ((𝐴𝑦) ∈ Fin ↔ ∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤)
2827biimpi 215 . . . . . . . . . 10 ((𝐴𝑦) ∈ Fin → ∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤)
29 r19.41v 3188 . . . . . . . . . . 11 (∃𝑤 ∈ ω ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) ↔ (∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)))
30 disjsn 4715 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝐴𝑦))
31 elun 4148 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴𝑧𝑦))
3231notbii 319 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (𝐴𝑦) ↔ ¬ (𝑧𝐴𝑧𝑦))
33 pm4.56 987 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ↔ ¬ (𝑧𝐴𝑧𝑦))
3432, 33bitr4i 277 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ (𝐴𝑦) ↔ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))
3530, 34sylbbr 235 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) → ((𝐴𝑦) ∩ {𝑧}) = ∅)
36 nnord 7865 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ω → Ord 𝑤)
37 orddisj 6402 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑤 → (𝑤 ∩ {𝑤}) = ∅)
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ω → (𝑤 ∩ {𝑤}) = ∅)
39 en2sn 9043 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → {𝑧} ≈ {𝑤})
4039el2v 3482 . . . . . . . . . . . . . . . . . . 19 {𝑧} ≈ {𝑤}
41 unen 9048 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑦) ≈ 𝑤 ∧ {𝑧} ≈ {𝑤}) ∧ (((𝐴𝑦) ∩ {𝑧}) = ∅ ∧ (𝑤 ∩ {𝑤}) = ∅)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
4240, 41mpanl2 699 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ≈ 𝑤 ∧ (((𝐴𝑦) ∩ {𝑧}) = ∅ ∧ (𝑤 ∩ {𝑤}) = ∅)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
4338, 42sylanr2 681 . . . . . . . . . . . . . . . . 17 (((𝐴𝑦) ≈ 𝑤 ∧ (((𝐴𝑦) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ ω)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
4435, 43sylanr1 680 . . . . . . . . . . . . . . . 16 (((𝐴𝑦) ≈ 𝑤 ∧ ((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ∧ 𝑤 ∈ ω)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
45443impb 1115 . . . . . . . . . . . . . . 15 (((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ∧ 𝑤 ∈ ω) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
46453comr 1125 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ (𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
47463expb 1120 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))) → ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤}))
48 unass 4166 . . . . . . . . . . . . . 14 ((𝐴𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))
49 df-suc 6370 . . . . . . . . . . . . . . . . 17 suc 𝑤 = (𝑤 ∪ {𝑤})
50 peano2 7883 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ω → suc 𝑤 ∈ ω)
5149, 50eqeltrrid 2838 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ω → (𝑤 ∪ {𝑤}) ∈ ω)
52 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑤 ∪ {𝑤}) → (((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣 ↔ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})))
5352rspcev 3612 . . . . . . . . . . . . . . . 16 (((𝑤 ∪ {𝑤}) ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ∃𝑣 ∈ ω ((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣)
5451, 53sylan 580 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ∃𝑣 ∈ ω ((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣)
55 isfi 8974 . . . . . . . . . . . . . . 15 (((𝐴𝑦) ∪ {𝑧}) ∈ Fin ↔ ∃𝑣 ∈ ω ((𝐴𝑦) ∪ {𝑧}) ≈ 𝑣)
5654, 55sylibr 233 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
5748, 56eqeltrrid 2838 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ∪ {𝑧}) ≈ (𝑤 ∪ {𝑤})) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
5847, 57syldan 591 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
5958rexlimiva 3147 . . . . . . . . . . 11 (∃𝑤 ∈ ω ((𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6029, 59sylbir 234 . . . . . . . . . 10 ((∃𝑤 ∈ ω (𝐴𝑦) ≈ 𝑤 ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6128, 60sylan 580 . . . . . . . . 9 (((𝐴𝑦) ∈ Fin ∧ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦)) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6261ancoms 459 . . . . . . . 8 (((¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦) ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6362expl 458 . . . . . . 7 𝑧𝐴 → ((¬ 𝑧𝑦 ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
6426, 63pm2.61i 182 . . . . . 6 ((¬ 𝑧𝑦 ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
6564ex 413 . . . . 5 𝑧𝑦 → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
6665imim2d 57 . . . 4 𝑧𝑦 → ((𝐴 ∈ Fin → (𝐴𝑦) ∈ Fin) → (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)))
6766adantl 482 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐴 ∈ Fin → (𝐴𝑦) ∈ Fin) → (𝐴 ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)))
683, 6, 9, 12, 15, 67findcard2s 9167 . 2 (𝐵 ∈ Fin → (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin))
6968impcom 408 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  Ord word 6363  suc csuc 6366  ωcom 7857  cen 8938  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7858  df-en 8942  df-fin 8945
This theorem is referenced by:  ssfi  9175  imafi  9177  pwfilem  9179  cnvfi  9182  fnfi  9183  unfi2  9317  difinf  9318  xpfi  9319  xpfiOLD  9320  prfi  9324  tpfi  9325  iunfi  9342  pwfilemOLD  9348  fsuppun  9384  fsuppunfi  9385  ressuppfi  9392  fiin  9419  cantnfp1lem1  9675  ficardadju  10196  ficardun2  10199  ficardun2OLD  10200  ackbij1lem6  10222  ackbij1lem16  10232  fin23lem28  10337  fin23lem30  10339  isfin1-3  10383  axcclem  10454  hashun  14344  hashunlei  14387  hashmap  14397  hashbclem  14413  hashf1lem1OLD  14418  hashf1lem2  14419  hashf1  14420  fsumsplitsn  15692  fsummsnunz  15702  fsumsplitsnun  15703  incexclem  15784  isumltss  15796  fprodsplitsn  15935  lcmfunsnlem2lem1  16577  lcmfunsnlem2lem2  16578  lcmfunsnlem2  16579  lcmfun  16584  ramub1lem1  16961  fpwipodrs  18495  acsfiindd  18508  symgfisg  19338  gsumzunsnd  19826  gsumunsnfd  19827  dsmmacl  21302  psrbagaddclOLD  21488  mplsubg  21567  mpllss  21568  fctop  22514  uncmp  22914  bwth  22921  lfinun  23036  locfincmp  23037  comppfsc  23043  1stckgenlem  23064  ptbasin  23088  cfinfil  23404  fin1aufil  23443  alexsubALTlem3  23560  tmdgsum  23606  tsmsfbas  23639  tsmsgsum  23650  tsmsres  23655  tsmsxplem1  23664  prdsmet  23883  prdsbl  24007  icccmplem2  24346  rrxmval  24929  rrxmet  24932  rrxdstprj1  24933  ovolfiniun  25025  volfiniun  25071  fta1glem2  25691  fta1lem  25827  aannenlem2  25849  aalioulem2  25853  dchrfi  26765  usgrfilem  28622  ffsrn  31992  eulerpartlemt  33439  ballotlemgun  33592  hgt750lemb  33737  hgt750leme  33739  lindsenlbs  36575  poimirlem31  36611  poimirlem32  36612  itg2addnclem2  36632  ftc1anclem7  36659  ftc1anc  36661  prdsbnd  36753  pclfinN  38863  elrfi  41520  mzpcompact2lem  41577  eldioph2  41588  lsmfgcl  41904  fiuneneq  42027  unfid  43930  dvmptfprodlem  44745  dvnprodlem2  44748  fourierdlem50  44957  fourierdlem51  44958  fourierdlem54  44961  fourierdlem76  44983  fourierdlem80  44987  fourierdlem102  45009  fourierdlem103  45010  fourierdlem104  45011  fourierdlem114  45021  sge0resplit  45207  sge0iunmptlemfi  45214  sge0xaddlem1  45234  hoiprodp1  45389  sge0hsphoire  45390  hoidmvlelem1  45396  hoidmvlelem2  45397  hoidmvlelem5  45400  hspmbllem2  45428  fsummmodsnunz  46128  mndpsuppfi  47136
  Copyright terms: Public domain W3C validator