| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniclaxun | Structured version Visualization version GIF version | ||
| Description: A class that is closed under the union operation models the Axiom of Union ax-un 7751. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| uniclaxun | ⊢ (∀𝑥 ∈ 𝑀 ∪ 𝑥 ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexex 3075 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | |
| 2 | eluni 4908 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ ∪ 𝑥) |
| 4 | 3 | rgenw 3064 | . . 3 ⊢ ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ ∪ 𝑥) |
| 5 | eleq2 2829 | . . . . . 6 ⊢ (𝑦 = ∪ 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) | |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑦 = ∪ 𝑥 → ((∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ ∪ 𝑥))) |
| 7 | 6 | ralbidv 3177 | . . . 4 ⊢ (𝑦 = ∪ 𝑥 → (∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ ∪ 𝑥))) |
| 8 | 7 | rspcev 3621 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝑀 ∧ ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ ∪ 𝑥)) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 9 | 4, 8 | mpan2 691 | . 2 ⊢ (∪ 𝑥 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 10 | 9 | ralimi 3082 | 1 ⊢ (∀𝑥 ∈ 𝑀 ∪ 𝑥 ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3060 ∃wrex 3069 ∪ cuni 4905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-v 3481 df-uni 4906 |
| This theorem is referenced by: wfaxun 44989 |
| Copyright terms: Public domain | W3C validator |