Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniclaxun Structured version   Visualization version   GIF version

Theorem uniclaxun 44969
Description: A class that is closed under the union operation models the Axiom of Union ax-un 7713. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.)
Assertion
Ref Expression
uniclaxun (∀𝑥𝑀 𝑥𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑦,𝑀
Allowed substitution hints:   𝑀(𝑥,𝑧,𝑤)

Proof of Theorem uniclaxun
StepHypRef Expression
1 rexex 3060 . . . . 5 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → ∃𝑤(𝑧𝑤𝑤𝑥))
2 eluni 4876 . . . . 5 (𝑧 𝑥 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
31, 2sylibr 234 . . . 4 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)
43rgenw 3049 . . 3 𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)
5 eleq2 2818 . . . . . 6 (𝑦 = 𝑥 → (𝑧𝑦𝑧 𝑥))
65imbi2d 340 . . . . 5 (𝑦 = 𝑥 → ((∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)))
76ralbidv 3157 . . . 4 (𝑦 = 𝑥 → (∀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ ∀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)))
87rspcev 3591 . . 3 (( 𝑥𝑀 ∧ ∀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)) → ∃𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
94, 8mpan2 691 . 2 ( 𝑥𝑀 → ∃𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
109ralimi 3067 1 (∀𝑥𝑀 𝑥𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054   cuni 4873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-uni 4874
This theorem is referenced by:  wfaxun  44982
  Copyright terms: Public domain W3C validator