Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniclaxun Structured version   Visualization version   GIF version

Theorem uniclaxun 45089
Description: A class that is closed under the union operation models the Axiom of Union ax-un 7668. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.)
Assertion
Ref Expression
uniclaxun (∀𝑥𝑀 𝑥𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑦,𝑀
Allowed substitution hints:   𝑀(𝑥,𝑧,𝑤)

Proof of Theorem uniclaxun
StepHypRef Expression
1 rexex 3062 . . . . 5 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → ∃𝑤(𝑧𝑤𝑤𝑥))
2 eluni 4859 . . . . 5 (𝑧 𝑥 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
31, 2sylibr 234 . . . 4 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)
43rgenw 3051 . . 3 𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)
5 eleq2 2820 . . . . . 6 (𝑦 = 𝑥 → (𝑧𝑦𝑧 𝑥))
65imbi2d 340 . . . . 5 (𝑦 = 𝑥 → ((∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)))
76ralbidv 3155 . . . 4 (𝑦 = 𝑥 → (∀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ ∀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)))
87rspcev 3572 . . 3 (( 𝑥𝑀 ∧ ∀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧 𝑥)) → ∃𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
94, 8mpan2 691 . 2 ( 𝑥𝑀 → ∃𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
109ralimi 3069 1 (∀𝑥𝑀 𝑥𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-uni 4857
This theorem is referenced by:  wfaxun  45102
  Copyright terms: Public domain W3C validator