![]() |
Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prclaxpr | Structured version Visualization version GIF version |
Description: A class that is closed under the pairing operation models the Axiom of Pairing ax-pr 5437. Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 29-Sep-2025.) |
Ref | Expression |
---|---|
prclaxpr | ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . . . . . 6 ⊢ 𝑤 ∈ V | |
2 | 1 | elpr 4654 | . . . . 5 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
3 | 2 | biimpri 228 | . . . 4 ⊢ ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ {𝑥, 𝑦}) |
4 | 3 | rgenw 3062 | . . 3 ⊢ ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ {𝑥, 𝑦}) |
5 | eleq2 2827 | . . . . . 6 ⊢ (𝑧 = {𝑥, 𝑦} → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑧 = {𝑥, 𝑦} → (((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) ↔ ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ {𝑥, 𝑦}))) |
7 | 6 | ralbidv 3175 | . . . 4 ⊢ (𝑧 = {𝑥, 𝑦} → (∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) ↔ ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ {𝑥, 𝑦}))) |
8 | 7 | rspcev 3621 | . . 3 ⊢ (({𝑥, 𝑦} ∈ 𝑀 ∧ ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ {𝑥, 𝑦})) → ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
9 | 4, 8 | mpan2 691 | . 2 ⊢ ({𝑥, 𝑦} ∈ 𝑀 → ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
10 | 9 | 2ralimi 3120 | 1 ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-v 3479 df-un 3967 df-sn 4631 df-pr 4633 |
This theorem is referenced by: wfaxpr 44951 |
Copyright terms: Public domain | W3C validator |