Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sswfaxreg Structured version   Visualization version   GIF version

Theorem sswfaxreg 45144
Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9489. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
sswfaxreg (𝑀 (𝑅1 “ On) → ∀𝑥𝑀 (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑀

Proof of Theorem sswfaxreg
StepHypRef Expression
1 inn0 4321 . . . 4 ((𝑀𝑥) ≠ ∅ ↔ ∃𝑦𝑀 𝑦𝑥)
2 ssinss1 4195 . . . . . 6 (𝑀 (𝑅1 “ On) → (𝑀𝑥) ⊆ (𝑅1 “ On))
3 vex 3441 . . . . . . . 8 𝑥 ∈ V
43inex2 5260 . . . . . . 7 (𝑀𝑥) ∈ V
5 wffr 45118 . . . . . . 7 E Fr (𝑅1 “ On)
6 fri 5579 . . . . . . 7 ((((𝑀𝑥) ∈ V ∧ E Fr (𝑅1 “ On)) ∧ ((𝑀𝑥) ⊆ (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦)
74, 5, 6mpanl12 702 . . . . . 6 (((𝑀𝑥) ⊆ (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦)
82, 7sylan 580 . . . . 5 ((𝑀 (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦)
9 ralin 4198 . . . . . . . 8 (∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧𝑀 (𝑧𝑥 → ¬ 𝑧 E 𝑦))
10 con2b 359 . . . . . . . . . 10 ((𝑧𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧𝑥))
11 epel 5524 . . . . . . . . . . 11 (𝑧 E 𝑦𝑧𝑦)
1211imbi1i 349 . . . . . . . . . 10 ((𝑧 E 𝑦 → ¬ 𝑧𝑥) ↔ (𝑧𝑦 → ¬ 𝑧𝑥))
1310, 12bitri 275 . . . . . . . . 9 ((𝑧𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧𝑦 → ¬ 𝑧𝑥))
1413ralbii 3079 . . . . . . . 8 (∀𝑧𝑀 (𝑧𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))
159, 14bitri 275 . . . . . . 7 (∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))
1615rexbii 3080 . . . . . 6 (∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀𝑥)∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))
17 rexin 4199 . . . . . 6 (∃𝑦 ∈ (𝑀𝑥)∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥) ↔ ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
1816, 17bitri 275 . . . . 5 (∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
198, 18sylib 218 . . . 4 ((𝑀 (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅) → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
201, 19sylan2br 595 . . 3 ((𝑀 (𝑅1 “ On) ∧ ∃𝑦𝑀 𝑦𝑥) → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
2120ex 412 . 2 (𝑀 (𝑅1 “ On) → (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
2221ralrimivw 3129 1 (𝑀 (𝑅1 “ On) → ∀𝑥𝑀 (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898  c0 4282   cuni 4860   class class class wbr 5095   E cep 5520   Fr wfr 5571  cima 5624  Oncon0 6314  𝑅1cr1 9666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-r1 9668  df-rank 9669  df-relp 45100
This theorem is referenced by:  wfaxreg  45157
  Copyright terms: Public domain W3C validator