| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sswfaxreg | Structured version Visualization version GIF version | ||
| Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9521. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| sswfaxreg | ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inn0 4331 | . . . 4 ⊢ ((𝑀 ∩ 𝑥) ≠ ∅ ↔ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) | |
| 2 | ssinss1 4205 | . . . . . 6 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | vex 3448 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex2 5268 | . . . . . . 7 ⊢ (𝑀 ∩ 𝑥) ∈ V |
| 5 | wffr 44924 | . . . . . . 7 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 6 | fri 5589 | . . . . . . 7 ⊢ ((((𝑀 ∩ 𝑥) ∈ V ∧ E Fr ∪ (𝑅1 “ On)) ∧ ((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . . . . 6 ⊢ (((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 8 | 2, 7 | sylan 580 | . . . . 5 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 9 | ralin 4208 | . . . . . . . 8 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦)) | |
| 10 | con2b 359 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥)) | |
| 11 | epel 5534 | . . . . . . . . . . 11 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 12 | 11 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 13 | 10, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 14 | 13 | ralbii 3075 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 15 | 9, 14 | bitri 275 | . . . . . . 7 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 16 | 15 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 17 | rexin 4209 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 19 | 8, 18 | sylib 218 | . . . 4 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 20 | 1, 19 | sylan2br 595 | . . 3 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| 22 | 21 | ralrimivw 3129 | 1 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 class class class wbr 5102 E cep 5530 Fr wfr 5581 “ cima 5634 Oncon0 6320 𝑅1cr1 9691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 df-relp 44906 |
| This theorem is referenced by: wfaxreg 44963 |
| Copyright terms: Public domain | W3C validator |