| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sswfaxreg | Structured version Visualization version GIF version | ||
| Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9551. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| sswfaxreg | ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inn0 4337 | . . . 4 ⊢ ((𝑀 ∩ 𝑥) ≠ ∅ ↔ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) | |
| 2 | ssinss1 4211 | . . . . . 6 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex2 5275 | . . . . . . 7 ⊢ (𝑀 ∩ 𝑥) ∈ V |
| 5 | wffr 44944 | . . . . . . 7 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 6 | fri 5598 | . . . . . . 7 ⊢ ((((𝑀 ∩ 𝑥) ∈ V ∧ E Fr ∪ (𝑅1 “ On)) ∧ ((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . . . . 6 ⊢ (((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 8 | 2, 7 | sylan 580 | . . . . 5 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 9 | ralin 4214 | . . . . . . . 8 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦)) | |
| 10 | con2b 359 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥)) | |
| 11 | epel 5543 | . . . . . . . . . . 11 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 12 | 11 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 13 | 10, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 14 | 13 | ralbii 3076 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 15 | 9, 14 | bitri 275 | . . . . . . 7 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 16 | 15 | rexbii 3077 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 17 | rexin 4215 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 19 | 8, 18 | sylib 218 | . . . 4 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 20 | 1, 19 | sylan2br 595 | . . 3 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| 22 | 21 | ralrimivw 3130 | 1 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 class class class wbr 5109 E cep 5539 Fr wfr 5590 “ cima 5643 Oncon0 6334 𝑅1cr1 9721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-r1 9723 df-rank 9724 df-relp 44926 |
| This theorem is referenced by: wfaxreg 44983 |
| Copyright terms: Public domain | W3C validator |