| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sswfaxreg | Structured version Visualization version GIF version | ||
| Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9598. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| sswfaxreg | ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inn0 4345 | . . . 4 ⊢ ((𝑀 ∩ 𝑥) ≠ ∅ ↔ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) | |
| 2 | ssinss1 4219 | . . . . . 6 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | vex 3461 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex2 5285 | . . . . . . 7 ⊢ (𝑀 ∩ 𝑥) ∈ V |
| 5 | wffr 44913 | . . . . . . 7 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 6 | fri 5608 | . . . . . . 7 ⊢ ((((𝑀 ∩ 𝑥) ∈ V ∧ E Fr ∪ (𝑅1 “ On)) ∧ ((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . . . . 6 ⊢ (((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 8 | 2, 7 | sylan 580 | . . . . 5 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 9 | ralin 4222 | . . . . . . . 8 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦)) | |
| 10 | con2b 359 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥)) | |
| 11 | epel 5553 | . . . . . . . . . . 11 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 12 | 11 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 13 | 10, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 14 | 13 | ralbii 3081 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 15 | 9, 14 | bitri 275 | . . . . . . 7 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 16 | 15 | rexbii 3082 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 17 | rexin 4223 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 19 | 8, 18 | sylib 218 | . . . 4 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 20 | 1, 19 | sylan2br 595 | . . 3 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| 22 | 21 | ralrimivw 3134 | 1 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 Vcvv 3457 ∩ cin 3923 ⊆ wss 3924 ∅c0 4306 ∪ cuni 4880 class class class wbr 5116 E cep 5549 Fr wfr 5600 “ cima 5654 Oncon0 6349 𝑅1cr1 9768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-r1 9770 df-rank 9771 df-relp 44895 |
| This theorem is referenced by: wfaxreg 44952 |
| Copyright terms: Public domain | W3C validator |