| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sswfaxreg | Structured version Visualization version GIF version | ||
| Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9473. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| sswfaxreg | ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inn0 4317 | . . . 4 ⊢ ((𝑀 ∩ 𝑥) ≠ ∅ ↔ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) | |
| 2 | ssinss1 4191 | . . . . . 6 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex2 5251 | . . . . . . 7 ⊢ (𝑀 ∩ 𝑥) ∈ V |
| 5 | wffr 44994 | . . . . . . 7 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 6 | fri 5569 | . . . . . . 7 ⊢ ((((𝑀 ∩ 𝑥) ∈ V ∧ E Fr ∪ (𝑅1 “ On)) ∧ ((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . . . . 6 ⊢ (((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 8 | 2, 7 | sylan 580 | . . . . 5 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 9 | ralin 4194 | . . . . . . . 8 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦)) | |
| 10 | con2b 359 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥)) | |
| 11 | epel 5514 | . . . . . . . . . . 11 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 12 | 11 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 13 | 10, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 14 | 13 | ralbii 3078 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 15 | 9, 14 | bitri 275 | . . . . . . 7 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 16 | 15 | rexbii 3079 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 17 | rexin 4195 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 19 | 8, 18 | sylib 218 | . . . 4 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 20 | 1, 19 | sylan2br 595 | . . 3 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| 22 | 21 | ralrimivw 3128 | 1 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 ∪ cuni 4854 class class class wbr 5086 E cep 5510 Fr wfr 5561 “ cima 5614 Oncon0 6301 𝑅1cr1 9650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-r1 9652 df-rank 9653 df-relp 44976 |
| This theorem is referenced by: wfaxreg 45033 |
| Copyright terms: Public domain | W3C validator |