Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sswfaxreg Structured version   Visualization version   GIF version

Theorem sswfaxreg 44981
Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9503. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
sswfaxreg (𝑀 (𝑅1 “ On) → ∀𝑥𝑀 (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑀

Proof of Theorem sswfaxreg
StepHypRef Expression
1 inn0 4325 . . . 4 ((𝑀𝑥) ≠ ∅ ↔ ∃𝑦𝑀 𝑦𝑥)
2 ssinss1 4199 . . . . . 6 (𝑀 (𝑅1 “ On) → (𝑀𝑥) ⊆ (𝑅1 “ On))
3 vex 3442 . . . . . . . 8 𝑥 ∈ V
43inex2 5260 . . . . . . 7 (𝑀𝑥) ∈ V
5 wffr 44955 . . . . . . 7 E Fr (𝑅1 “ On)
6 fri 5581 . . . . . . 7 ((((𝑀𝑥) ∈ V ∧ E Fr (𝑅1 “ On)) ∧ ((𝑀𝑥) ⊆ (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦)
74, 5, 6mpanl12 702 . . . . . 6 (((𝑀𝑥) ⊆ (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦)
82, 7sylan 580 . . . . 5 ((𝑀 (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦)
9 ralin 4202 . . . . . . . 8 (∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧𝑀 (𝑧𝑥 → ¬ 𝑧 E 𝑦))
10 con2b 359 . . . . . . . . . 10 ((𝑧𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧𝑥))
11 epel 5526 . . . . . . . . . . 11 (𝑧 E 𝑦𝑧𝑦)
1211imbi1i 349 . . . . . . . . . 10 ((𝑧 E 𝑦 → ¬ 𝑧𝑥) ↔ (𝑧𝑦 → ¬ 𝑧𝑥))
1310, 12bitri 275 . . . . . . . . 9 ((𝑧𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧𝑦 → ¬ 𝑧𝑥))
1413ralbii 3075 . . . . . . . 8 (∀𝑧𝑀 (𝑧𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))
159, 14bitri 275 . . . . . . 7 (∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))
1615rexbii 3076 . . . . . 6 (∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀𝑥)∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))
17 rexin 4203 . . . . . 6 (∃𝑦 ∈ (𝑀𝑥)∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥) ↔ ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
1816, 17bitri 275 . . . . 5 (∃𝑦 ∈ (𝑀𝑥)∀𝑧 ∈ (𝑀𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
198, 18sylib 218 . . . 4 ((𝑀 (𝑅1 “ On) ∧ (𝑀𝑥) ≠ ∅) → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
201, 19sylan2br 595 . . 3 ((𝑀 (𝑅1 “ On) ∧ ∃𝑦𝑀 𝑦𝑥) → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥)))
2120ex 412 . 2 (𝑀 (𝑅1 “ On) → (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
2221ralrimivw 3125 1 (𝑀 (𝑅1 “ On) → ∀𝑥𝑀 (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905  c0 4286   cuni 4861   class class class wbr 5095   E cep 5522   Fr wfr 5573  cima 5626  Oncon0 6311  𝑅1cr1 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-r1 9679  df-rank 9680  df-relp 44937
This theorem is referenced by:  wfaxreg  44994
  Copyright terms: Public domain W3C validator