| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sswfaxreg | Structured version Visualization version GIF version | ||
| Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9503. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| sswfaxreg | ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inn0 4325 | . . . 4 ⊢ ((𝑀 ∩ 𝑥) ≠ ∅ ↔ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) | |
| 2 | ssinss1 4199 | . . . . . 6 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | vex 3442 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex2 5260 | . . . . . . 7 ⊢ (𝑀 ∩ 𝑥) ∈ V |
| 5 | wffr 44955 | . . . . . . 7 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 6 | fri 5581 | . . . . . . 7 ⊢ ((((𝑀 ∩ 𝑥) ∈ V ∧ E Fr ∪ (𝑅1 “ On)) ∧ ((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅)) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . . . . 6 ⊢ (((𝑀 ∩ 𝑥) ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 8 | 2, 7 | sylan 580 | . . . . 5 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦) |
| 9 | ralin 4202 | . . . . . . . 8 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦)) | |
| 10 | con2b 359 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥)) | |
| 11 | epel 5526 | . . . . . . . . . . 11 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 12 | 11 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 13 | 10, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 14 | 13 | ralbii 3075 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦) ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 15 | 9, 14 | bitri 275 | . . . . . . 7 ⊢ (∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 16 | 15 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 17 | rexin 4203 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥) ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ (𝑀 ∩ 𝑥)∀𝑧 ∈ (𝑀 ∩ 𝑥) ¬ 𝑧 E 𝑦 ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 19 | 8, 18 | sylib 218 | . . . 4 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ (𝑀 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 20 | 1, 19 | sylan2br 595 | . . 3 ⊢ ((𝑀 ⊆ ∪ (𝑅1 “ On) ∧ ∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| 22 | 21 | ralrimivw 3125 | 1 ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ∪ cuni 4861 class class class wbr 5095 E cep 5522 Fr wfr 5573 “ cima 5626 Oncon0 6311 𝑅1cr1 9677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 df-relp 44937 |
| This theorem is referenced by: wfaxreg 44994 |
| Copyright terms: Public domain | W3C validator |