| Step | Hyp | Ref
| Expression |
| 1 | | uniiun 5058 |
. 2
⊢ ∪ 𝐵 =
∪ 𝑦 ∈ 𝐵 𝑦 |
| 2 | | elun1 4182 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐵 ∪ {∅})) |
| 3 | | foelcdmi 6970 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ (𝐵 ∪ {∅})) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 4 | 2, 3 | sylan2 593 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 5 | | eqimss2 4043 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 ⊆ (𝐹‘𝑥)) |
| 6 | 5 | reximi 3084 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 7 | 4, 6 | syl 17 |
. . . . 5
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 8 | 7 | ralrimiva 3146 |
. . . 4
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 9 | | iunss2 5049 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥) → ∪
𝑦 ∈ 𝐵 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 11 | | simpl 482 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝐹:𝐴–onto→(𝐵 ∪ {∅})) |
| 12 | | uneq1 4161 |
. . . . . . . . 9
⊢ (𝐵 = ∅ → (𝐵 ∪ {∅}) = (∅
∪ {∅})) |
| 13 | | 0un 4396 |
. . . . . . . . 9
⊢ (∅
∪ {∅}) = {∅} |
| 14 | 12, 13 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝐵 = ∅ → (𝐵 ∪ {∅}) =
{∅}) |
| 15 | 14 | adantl 481 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → (𝐵 ∪ {∅}) =
{∅}) |
| 16 | | foeq3 6818 |
. . . . . . 7
⊢ ((𝐵 ∪ {∅}) = {∅}
→ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) ↔ 𝐹:𝐴–onto→{∅})) |
| 17 | 15, 16 | syl 17 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → (𝐹:𝐴–onto→(𝐵 ∪ {∅}) ↔ 𝐹:𝐴–onto→{∅})) |
| 18 | 11, 17 | mpbid 232 |
. . . . 5
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝐹:𝐴–onto→{∅}) |
| 19 | | founiiun 45184 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{∅} → ∪
{∅} = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 20 | | unisn0 45059 |
. . . . . . 7
⊢ ∪ {∅} = ∅ |
| 21 | 19, 20 | eqtr3di 2792 |
. . . . . 6
⊢ (𝐹:𝐴–onto→{∅} → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∅) |
| 22 | | 0ss 4400 |
. . . . . 6
⊢ ∅
⊆ ∪ 𝑦 ∈ 𝐵 𝑦 |
| 23 | 21, 22 | eqsstrdi 4028 |
. . . . 5
⊢ (𝐹:𝐴–onto→{∅} → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 24 | 18, 23 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 25 | | ssid 4006 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ⊆ (𝐹‘𝑥) |
| 26 | | sseq2 4010 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑥) ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑥))) |
| 27 | 26 | rspcev 3622 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 28 | 25, 27 | mpan2 691 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ 𝐵 → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 29 | 28 | adantl 481 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 30 | | fof 6820 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → 𝐹:𝐴⟶(𝐵 ∪ {∅})) |
| 31 | 30 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐵 ∪ {∅})) |
| 32 | | elunnel1 4154 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) ∈ (𝐵 ∪ {∅}) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ {∅}) |
| 33 | 31, 32 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ {∅}) |
| 34 | | elsni 4643 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ {∅} → (𝐹‘𝑥) = ∅) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) = ∅) |
| 36 | 35 | adantllr 719 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) = ∅) |
| 37 | | neq0 4352 |
. . . . . . . . . . . . 13
⊢ (¬
𝐵 = ∅ ↔
∃𝑦 𝑦 ∈ 𝐵) |
| 38 | 37 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (¬
𝐵 = ∅ →
∃𝑦 𝑦 ∈ 𝐵) |
| 39 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → ∃𝑦 𝑦 ∈ 𝐵) |
| 40 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) = ∅) |
| 41 | | 0ss 4400 |
. . . . . . . . . . . . . . . 16
⊢ ∅
⊆ 𝑦 |
| 42 | 40, 41 | eqsstrdi 4028 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) ⊆ 𝑦) |
| 43 | 42 | anim1ci 616 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑥) = ∅ ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦)) |
| 44 | 43 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = ∅ → (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦))) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦))) |
| 46 | 45 | eximdv 1917 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → (∃𝑦 𝑦 ∈ 𝐵 → ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦))) |
| 47 | 39, 46 | mpd 15 |
. . . . . . . . . 10
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦)) |
| 48 | | df-rex 3071 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐵 (𝐹‘𝑥) ⊆ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦)) |
| 49 | 47, 48 | sylibr 234 |
. . . . . . . . 9
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 50 | 49 | ad4ant24 754 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) = ∅) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 51 | 36, 50 | syldan 591 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 52 | 29, 51 | pm2.61dan 813 |
. . . . . 6
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 53 | 52 | ralrimiva 3146 |
. . . . 5
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 54 | | iunss2 5049 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦 → ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 55 | 53, 54 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 56 | 24, 55 | pm2.61dan 813 |
. . 3
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 57 | 10, 56 | eqssd 4001 |
. 2
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝑦 ∈ 𝐵 𝑦 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 58 | 1, 57 | eqtrid 2789 |
1
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝐵 =
∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |