| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 5277 |
. . . 4
⊢ ∅
∈ V |
| 2 | 1 | prid1 4738 |
. . 3
⊢ ∅
∈ {∅, 𝑋} |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∅ ∈ {∅, 𝑋}) |
| 4 | | uniprg 4899 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ 𝑋 ∈
𝑉) → ∪ {∅, 𝑋} = (∅ ∪ 𝑋)) |
| 5 | 1, 4 | mpan 690 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → ∪
{∅, 𝑋} = (∅
∪ 𝑋)) |
| 6 | | 0un 4371 |
. . . . . . 7
⊢ (∅
∪ 𝑋) = 𝑋 |
| 7 | 5, 6 | eqtrdi 2786 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ∪
{∅, 𝑋} = 𝑋) |
| 8 | 7 | difeq1d 4100 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (∪
{∅, 𝑋} ∖ 𝑦) = (𝑋 ∖ 𝑦)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (∪
{∅, 𝑋} ∖ 𝑦) = (𝑋 ∖ 𝑦)) |
| 10 | | difeq2 4095 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑋 ∖ 𝑦) = (𝑋 ∖ ∅)) |
| 11 | 10 | adantl 481 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) = (𝑋 ∖ ∅)) |
| 12 | | dif0 4353 |
. . . . . . . 8
⊢ (𝑋 ∖ ∅) = 𝑋 |
| 13 | 11, 12 | eqtrdi 2786 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) = 𝑋) |
| 14 | | prid2g 4737 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {∅, 𝑋}) |
| 15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → 𝑋 ∈ {∅, 𝑋}) |
| 16 | 13, 15 | eqeltrd 2834 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
| 17 | 16 | adantlr 715 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
| 18 | | neqne 2940 |
. . . . . . . 8
⊢ (¬
𝑦 = ∅ → 𝑦 ≠ ∅) |
| 19 | | elprn1 45662 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ 𝑦 ≠ ∅) → 𝑦 = 𝑋) |
| 20 | 18, 19 | sylan2 593 |
. . . . . . 7
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ ¬ 𝑦 = ∅) → 𝑦 = 𝑋) |
| 21 | 20 | adantll 714 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → 𝑦 = 𝑋) |
| 22 | | difeq2 4095 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) = (𝑋 ∖ 𝑋)) |
| 23 | | difid 4351 |
. . . . . . . 8
⊢ (𝑋 ∖ 𝑋) = ∅ |
| 24 | 22, 23 | eqtrdi 2786 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) = ∅) |
| 25 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ∅ ∈ {∅, 𝑋}) |
| 26 | 24, 25 | eqeltrd 2834 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
| 27 | 21, 26 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
| 28 | 17, 27 | pm2.61dan 812 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
| 29 | 9, 28 | eqeltrd 2834 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (∪
{∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋}) |
| 30 | 29 | ralrimiva 3132 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ {∅, 𝑋} (∪ {∅,
𝑋} ∖ 𝑦) ∈ {∅, 𝑋}) |
| 31 | | elpwi 4582 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ⊆ {∅, 𝑋}) |
| 32 | 31 | unissd 4893 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → ∪ 𝑦
⊆ ∪ {∅, 𝑋}) |
| 33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ⊆ ∪ {∅, 𝑋}) |
| 34 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪
{∅, 𝑋} = 𝑋) |
| 35 | 33, 34 | sseqtrd 3995 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ⊆ 𝑋) |
| 36 | 35 | adantr 480 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 ⊆ 𝑋) |
| 37 | | elssuni 4913 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑦 → 𝑋 ⊆ ∪ 𝑦) |
| 38 | 37 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → 𝑋 ⊆ ∪ 𝑦) |
| 39 | 36, 38 | eqssd 3976 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 = 𝑋) |
| 40 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → 𝑋 ∈ {∅, 𝑋}) |
| 41 | 39, 40 | eqeltrd 2834 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 ∈ {∅, 𝑋}) |
| 42 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ∈ 𝒫 {∅,
𝑋}) |
| 43 | | pwpr 4877 |
. . . . . . . . . . 11
⊢ 𝒫
{∅, 𝑋} = ({∅,
{∅}} ∪ {{𝑋},
{∅, 𝑋}}) |
| 44 | 42, 43 | eleqtrdi 2844 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ∈ ({∅, {∅}}
∪ {{𝑋}, {∅, 𝑋}})) |
| 45 | 44 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝒫 {∅,
𝑋} ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ ({∅, {∅}} ∪ {{𝑋}, {∅, 𝑋}})) |
| 46 | 45 | adantll 714 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ ({∅, {∅}} ∪ {{𝑋}, {∅, 𝑋}})) |
| 47 | | snidg 4636 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → 𝑋 ∈ {𝑋}) |
| 49 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {𝑋} → 𝑦 = {𝑋}) |
| 50 | 49 | eqcomd 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {𝑋} → {𝑋} = 𝑦) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → {𝑋} = 𝑦) |
| 52 | 48, 51 | eleqtrd 2836 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
| 53 | 52 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
| 54 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑉) |
| 55 | 54 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑉) |
| 56 | | neqne 2940 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑦 = {𝑋} → 𝑦 ≠ {𝑋}) |
| 57 | | elprn1 45662 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ 𝑦 ≠ {𝑋}) → 𝑦 = {∅, 𝑋}) |
| 58 | 56, 57 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ ¬ 𝑦 = {𝑋}) → 𝑦 = {∅, 𝑋}) |
| 59 | 58 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑦 = {∅, 𝑋}) |
| 60 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → 𝑋 ∈ {∅, 𝑋}) |
| 61 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {∅, 𝑋} → 𝑦 = {∅, 𝑋}) |
| 62 | 61 | eqcomd 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {∅, 𝑋} → {∅, 𝑋} = 𝑦) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → {∅, 𝑋} = 𝑦) |
| 64 | 60, 63 | eleqtrd 2836 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → 𝑋 ∈ 𝑦) |
| 65 | 55, 59, 64 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
| 66 | 53, 65 | pm2.61dan 812 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑋 ∈ 𝑦) |
| 67 | 66 | stoic1a 1772 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑦) → ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
| 68 | 67 | adantlr 715 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
| 69 | | elunnel2 4130 |
. . . . . . . 8
⊢ ((𝑦 ∈ ({∅, {∅}}
∪ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑦 ∈ {∅,
{∅}}) |
| 70 | 46, 68, 69 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ {∅,
{∅}}) |
| 71 | | unieq 4894 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∪ ∅) |
| 72 | | uni0 4911 |
. . . . . . . . . 10
⊢ ∪ ∅ = ∅ |
| 73 | 71, 72 | eqtrdi 2786 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∅) |
| 74 | 73 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, {∅}}
∧ 𝑦 = ∅) →
∪ 𝑦 = ∅) |
| 75 | | elprn1 45662 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ {∅, {∅}}
∧ 𝑦 ≠ ∅)
→ 𝑦 =
{∅}) |
| 76 | 18, 75 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ 𝑦 =
{∅}) |
| 77 | | unieq 4894 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → ∪ 𝑦 =
∪ {∅}) |
| 78 | | unisn0 45078 |
. . . . . . . . . 10
⊢ ∪ {∅} = ∅ |
| 79 | 77, 78 | eqtrdi 2786 |
. . . . . . . . 9
⊢ (𝑦 = {∅} → ∪ 𝑦 =
∅) |
| 80 | 76, 79 | syl 17 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ ∪ 𝑦 = ∅) |
| 81 | 74, 80 | pm2.61dan 812 |
. . . . . . 7
⊢ (𝑦 ∈ {∅, {∅}}
→ ∪ 𝑦 = ∅) |
| 82 | 70, 81 | syl 17 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∪ 𝑦 = ∅) |
| 83 | 2 | a1i 11 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∅ ∈ {∅, 𝑋}) |
| 84 | 82, 83 | eqeltrd 2834 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∪ 𝑦 ∈ {∅, 𝑋}) |
| 85 | 41, 84 | pm2.61dan 812 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ∈ {∅, 𝑋}) |
| 86 | 85 | a1d 25 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})) |
| 87 | 86 | ralrimiva 3132 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ 𝒫 {∅, 𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})) |
| 88 | | prex 5407 |
. . 3
⊢ {∅,
𝑋} ∈
V |
| 89 | | issal 46343 |
. . 3
⊢
({∅, 𝑋} ∈
V → ({∅, 𝑋}
∈ SAlg ↔ (∅ ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ {∅, 𝑋} (∪ {∅,
𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅,
𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})))) |
| 90 | 88, 89 | mp1i 13 |
. 2
⊢ (𝑋 ∈ 𝑉 → ({∅, 𝑋} ∈ SAlg ↔ (∅ ∈
{∅, 𝑋} ∧
∀𝑦 ∈ {∅,
𝑋} (∪ {∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅, 𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})))) |
| 91 | 3, 30, 87, 90 | mpbir3and 1343 |
1
⊢ (𝑋 ∈ 𝑉 → {∅, 𝑋} ∈ SAlg) |