Step | Hyp | Ref
| Expression |
1 | | 0ex 5226 |
. . . 4
⊢ ∅
∈ V |
2 | 1 | prid1 4695 |
. . 3
⊢ ∅
∈ {∅, 𝑋} |
3 | 2 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∅ ∈ {∅, 𝑋}) |
4 | | uniprg 4853 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ 𝑋 ∈
𝑉) → ∪ {∅, 𝑋} = (∅ ∪ 𝑋)) |
5 | 1, 4 | mpan 686 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → ∪
{∅, 𝑋} = (∅
∪ 𝑋)) |
6 | | 0un 4323 |
. . . . . . 7
⊢ (∅
∪ 𝑋) = 𝑋 |
7 | 5, 6 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ∪
{∅, 𝑋} = 𝑋) |
8 | 7 | difeq1d 4052 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (∪
{∅, 𝑋} ∖ 𝑦) = (𝑋 ∖ 𝑦)) |
9 | 8 | adantr 480 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (∪
{∅, 𝑋} ∖ 𝑦) = (𝑋 ∖ 𝑦)) |
10 | | difeq2 4047 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑋 ∖ 𝑦) = (𝑋 ∖ ∅)) |
11 | 10 | adantl 481 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) = (𝑋 ∖ ∅)) |
12 | | dif0 4303 |
. . . . . . . 8
⊢ (𝑋 ∖ ∅) = 𝑋 |
13 | 11, 12 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) = 𝑋) |
14 | | prid2g 4694 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {∅, 𝑋}) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → 𝑋 ∈ {∅, 𝑋}) |
16 | 13, 15 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
17 | 16 | adantlr 711 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
18 | | neqne 2950 |
. . . . . . . 8
⊢ (¬
𝑦 = ∅ → 𝑦 ≠ ∅) |
19 | | elprn1 43064 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ 𝑦 ≠ ∅) → 𝑦 = 𝑋) |
20 | 18, 19 | sylan2 592 |
. . . . . . 7
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ ¬ 𝑦 = ∅) → 𝑦 = 𝑋) |
21 | 20 | adantll 710 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → 𝑦 = 𝑋) |
22 | | difeq2 4047 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) = (𝑋 ∖ 𝑋)) |
23 | | difid 4301 |
. . . . . . . 8
⊢ (𝑋 ∖ 𝑋) = ∅ |
24 | 22, 23 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) = ∅) |
25 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ∅ ∈ {∅, 𝑋}) |
26 | 24, 25 | eqeltrd 2839 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
27 | 21, 26 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
28 | 17, 27 | pm2.61dan 809 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
29 | 9, 28 | eqeltrd 2839 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (∪
{∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋}) |
30 | 29 | ralrimiva 3107 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ {∅, 𝑋} (∪ {∅,
𝑋} ∖ 𝑦) ∈ {∅, 𝑋}) |
31 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ⊆ {∅, 𝑋}) |
32 | 31 | unissd 4846 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → ∪ 𝑦
⊆ ∪ {∅, 𝑋}) |
33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ⊆ ∪ {∅, 𝑋}) |
34 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪
{∅, 𝑋} = 𝑋) |
35 | 33, 34 | sseqtrd 3957 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ⊆ 𝑋) |
36 | 35 | adantr 480 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 ⊆ 𝑋) |
37 | | elssuni 4868 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑦 → 𝑋 ⊆ ∪ 𝑦) |
38 | 37 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → 𝑋 ⊆ ∪ 𝑦) |
39 | 36, 38 | eqssd 3934 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 = 𝑋) |
40 | 14 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → 𝑋 ∈ {∅, 𝑋}) |
41 | 39, 40 | eqeltrd 2839 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 ∈ {∅, 𝑋}) |
42 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ∈ 𝒫 {∅,
𝑋}) |
43 | | pwpr 4830 |
. . . . . . . . . . 11
⊢ 𝒫
{∅, 𝑋} = ({∅,
{∅}} ∪ {{𝑋},
{∅, 𝑋}}) |
44 | 42, 43 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ∈ ({∅, {∅}}
∪ {{𝑋}, {∅, 𝑋}})) |
45 | 44 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝒫 {∅,
𝑋} ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ ({∅, {∅}} ∪ {{𝑋}, {∅, 𝑋}})) |
46 | 45 | adantll 710 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ ({∅, {∅}} ∪ {{𝑋}, {∅, 𝑋}})) |
47 | | snidg 4592 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → 𝑋 ∈ {𝑋}) |
49 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {𝑋} → 𝑦 = {𝑋}) |
50 | 49 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {𝑋} → {𝑋} = 𝑦) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → {𝑋} = 𝑦) |
52 | 48, 51 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
53 | 52 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
54 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑉) |
55 | 54 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑉) |
56 | | neqne 2950 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑦 = {𝑋} → 𝑦 ≠ {𝑋}) |
57 | | elprn1 43064 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ 𝑦 ≠ {𝑋}) → 𝑦 = {∅, 𝑋}) |
58 | 56, 57 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ ¬ 𝑦 = {𝑋}) → 𝑦 = {∅, 𝑋}) |
59 | 58 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑦 = {∅, 𝑋}) |
60 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → 𝑋 ∈ {∅, 𝑋}) |
61 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {∅, 𝑋} → 𝑦 = {∅, 𝑋}) |
62 | 61 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {∅, 𝑋} → {∅, 𝑋} = 𝑦) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → {∅, 𝑋} = 𝑦) |
64 | 60, 63 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → 𝑋 ∈ 𝑦) |
65 | 55, 59, 64 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
66 | 53, 65 | pm2.61dan 809 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑋 ∈ 𝑦) |
67 | 66 | stoic1a 1776 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑦) → ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
68 | 67 | adantlr 711 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
69 | | elunnel2 42471 |
. . . . . . . 8
⊢ ((𝑦 ∈ ({∅, {∅}}
∪ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑦 ∈ {∅,
{∅}}) |
70 | 46, 68, 69 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ {∅,
{∅}}) |
71 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∪ ∅) |
72 | | uni0 4866 |
. . . . . . . . . 10
⊢ ∪ ∅ = ∅ |
73 | 71, 72 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∅) |
74 | 73 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, {∅}}
∧ 𝑦 = ∅) →
∪ 𝑦 = ∅) |
75 | | elprn1 43064 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ {∅, {∅}}
∧ 𝑦 ≠ ∅)
→ 𝑦 =
{∅}) |
76 | 18, 75 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ 𝑦 =
{∅}) |
77 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → ∪ 𝑦 =
∪ {∅}) |
78 | | unisn0 42491 |
. . . . . . . . . 10
⊢ ∪ {∅} = ∅ |
79 | 77, 78 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑦 = {∅} → ∪ 𝑦 =
∅) |
80 | 76, 79 | syl 17 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ ∪ 𝑦 = ∅) |
81 | 74, 80 | pm2.61dan 809 |
. . . . . . 7
⊢ (𝑦 ∈ {∅, {∅}}
→ ∪ 𝑦 = ∅) |
82 | 70, 81 | syl 17 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∪ 𝑦 = ∅) |
83 | 2 | a1i 11 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∅ ∈ {∅, 𝑋}) |
84 | 82, 83 | eqeltrd 2839 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∪ 𝑦 ∈ {∅, 𝑋}) |
85 | 41, 84 | pm2.61dan 809 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ∈ {∅, 𝑋}) |
86 | 85 | a1d 25 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})) |
87 | 86 | ralrimiva 3107 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ 𝒫 {∅, 𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})) |
88 | | prex 5350 |
. . 3
⊢ {∅,
𝑋} ∈
V |
89 | | issal 43745 |
. . 3
⊢
({∅, 𝑋} ∈
V → ({∅, 𝑋}
∈ SAlg ↔ (∅ ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ {∅, 𝑋} (∪ {∅,
𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅,
𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})))) |
90 | 88, 89 | mp1i 13 |
. 2
⊢ (𝑋 ∈ 𝑉 → ({∅, 𝑋} ∈ SAlg ↔ (∅ ∈
{∅, 𝑋} ∧
∀𝑦 ∈ {∅,
𝑋} (∪ {∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅, 𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})))) |
91 | 3, 30, 87, 90 | mpbir3and 1340 |
1
⊢ (𝑋 ∈ 𝑉 → {∅, 𝑋} ∈ SAlg) |