Step | Hyp | Ref
| Expression |
1 | | 0ex 5014 |
. . . . 5
⊢ ∅
∈ V |
2 | 1 | prid1 4515 |
. . . 4
⊢ ∅
∈ {∅, 𝑋} |
3 | 2 | a1i 11 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ∅ ∈ {∅, 𝑋}) |
4 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑉 → ∅ ∈ V) |
5 | | id 22 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑉) |
6 | | uniprg 4672 |
. . . . . . . . 9
⊢ ((∅
∈ V ∧ 𝑋 ∈
𝑉) → ∪ {∅, 𝑋} = (∅ ∪ 𝑋)) |
7 | 4, 5, 6 | syl2anc 581 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → ∪
{∅, 𝑋} = (∅
∪ 𝑋)) |
8 | | uncom 3984 |
. . . . . . . . . 10
⊢ (∅
∪ 𝑋) = (𝑋 ∪ ∅) |
9 | | un0 4192 |
. . . . . . . . . 10
⊢ (𝑋 ∪ ∅) = 𝑋 |
10 | 8, 9 | eqtri 2849 |
. . . . . . . . 9
⊢ (∅
∪ 𝑋) = 𝑋 |
11 | 10 | a1i 11 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → (∅ ∪ 𝑋) = 𝑋) |
12 | | eqidd 2826 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑋 = 𝑋) |
13 | 7, 11, 12 | 3eqtrd 2865 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → ∪
{∅, 𝑋} = 𝑋) |
14 | 13 | difeq1d 3954 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (∪
{∅, 𝑋} ∖ 𝑦) = (𝑋 ∖ 𝑦)) |
15 | 14 | adantr 474 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (∪
{∅, 𝑋} ∖ 𝑦) = (𝑋 ∖ 𝑦)) |
16 | | difeq2 3949 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → (𝑋 ∖ 𝑦) = (𝑋 ∖ ∅)) |
17 | 16 | adantl 475 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) = (𝑋 ∖ ∅)) |
18 | | dif0 4180 |
. . . . . . . . . 10
⊢ (𝑋 ∖ ∅) = 𝑋 |
19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ ∅) = 𝑋) |
20 | 17, 19 | eqtrd 2861 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) = 𝑋) |
21 | | prid2g 4514 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {∅, 𝑋}) |
22 | 21 | adantr 474 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → 𝑋 ∈ {∅, 𝑋}) |
23 | 20, 22 | eqeltrd 2906 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
24 | 23 | adantlr 708 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
25 | | simpll 785 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → 𝑋 ∈ 𝑉) |
26 | | simpl 476 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ {∅, 𝑋}) |
27 | | neqne 3007 |
. . . . . . . . . 10
⊢ (¬
𝑦 = ∅ → 𝑦 ≠ ∅) |
28 | 27 | adantl 475 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
29 | | elprn1 40660 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ 𝑦 ≠ ∅) → 𝑦 = 𝑋) |
30 | 26, 28, 29 | syl2anc 581 |
. . . . . . . 8
⊢ ((𝑦 ∈ {∅, 𝑋} ∧ ¬ 𝑦 = ∅) → 𝑦 = 𝑋) |
31 | 30 | adantll 707 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → 𝑦 = 𝑋) |
32 | | difeq2 3949 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) = (𝑋 ∖ 𝑋)) |
33 | | difid 4178 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝑋) = ∅ |
34 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑋) = ∅) |
35 | 32, 34 | eqtrd 2861 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) = ∅) |
36 | 2 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ∅ ∈ {∅, 𝑋}) |
37 | 35, 36 | eqeltrd 2906 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
38 | 37 | adantl 475 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = 𝑋) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
39 | 25, 31, 38 | syl2anc 581 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) ∧ ¬ 𝑦 = ∅) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
40 | 24, 39 | pm2.61dan 849 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (𝑋 ∖ 𝑦) ∈ {∅, 𝑋}) |
41 | 15, 40 | eqeltrd 2906 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {∅, 𝑋}) → (∪
{∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋}) |
42 | 41 | ralrimiva 3175 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ {∅, 𝑋} (∪ {∅,
𝑋} ∖ 𝑦) ∈ {∅, 𝑋}) |
43 | | elpwi 4388 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ⊆ {∅, 𝑋}) |
44 | | uniss 4681 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ {∅, 𝑋} → ∪ 𝑦
⊆ ∪ {∅, 𝑋}) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → ∪ 𝑦
⊆ ∪ {∅, 𝑋}) |
46 | 45 | adantl 475 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ⊆ ∪ {∅, 𝑋}) |
47 | 13 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪
{∅, 𝑋} = 𝑋) |
48 | 46, 47 | sseqtrd 3866 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ⊆ 𝑋) |
49 | 48 | adantr 474 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 ⊆ 𝑋) |
50 | | elssuni 4689 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑦 → 𝑋 ⊆ ∪ 𝑦) |
51 | 50 | adantl 475 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → 𝑋 ⊆ ∪ 𝑦) |
52 | 49, 51 | jca 509 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → (∪ 𝑦 ⊆ 𝑋 ∧ 𝑋 ⊆ ∪ 𝑦)) |
53 | | eqss 3842 |
. . . . . . . 8
⊢ (∪ 𝑦 =
𝑋 ↔ (∪ 𝑦
⊆ 𝑋 ∧ 𝑋 ⊆ ∪ 𝑦)) |
54 | 52, 53 | sylibr 226 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 = 𝑋) |
55 | 21 | ad2antrr 719 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → 𝑋 ∈ {∅, 𝑋}) |
56 | 54, 55 | eqeltrd 2906 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ 𝑋 ∈ 𝑦) → ∪ 𝑦 ∈ {∅, 𝑋}) |
57 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ∈ 𝒫 {∅,
𝑋}) |
58 | | pwpr 4652 |
. . . . . . . . . . . 12
⊢ 𝒫
{∅, 𝑋} = ({∅,
{∅}} ∪ {{𝑋},
{∅, 𝑋}}) |
59 | 57, 58 | syl6eleq 2916 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 {∅,
𝑋} → 𝑦 ∈ ({∅, {∅}}
∪ {{𝑋}, {∅, 𝑋}})) |
60 | 59 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝒫 {∅,
𝑋} ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ ({∅, {∅}} ∪ {{𝑋}, {∅, 𝑋}})) |
61 | 60 | adantll 707 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ ({∅, {∅}} ∪ {{𝑋}, {∅, 𝑋}})) |
62 | | snidg 4427 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) |
63 | 62 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → 𝑋 ∈ {𝑋}) |
64 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = {𝑋} → 𝑦 = {𝑋}) |
65 | 64 | eqcomd 2831 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = {𝑋} → {𝑋} = 𝑦) |
66 | 65 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → {𝑋} = 𝑦) |
67 | 63, 66 | eleqtrd 2908 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
68 | 67 | adantlr 708 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
69 | 5 | ad2antrr 719 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑉) |
70 | | simpl 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ ¬ 𝑦 = {𝑋}) → 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
71 | 64 | necon3bi 3025 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑦 = {𝑋} → 𝑦 ≠ {𝑋}) |
72 | 71 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ ¬ 𝑦 = {𝑋}) → 𝑦 ≠ {𝑋}) |
73 | | elprn1 40660 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ 𝑦 ≠ {𝑋}) → 𝑦 = {∅, 𝑋}) |
74 | 70, 72, 73 | syl2anc 581 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ {{𝑋}, {∅, 𝑋}} ∧ ¬ 𝑦 = {𝑋}) → 𝑦 = {∅, 𝑋}) |
75 | 74 | adantll 707 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑦 = {∅, 𝑋}) |
76 | 21 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → 𝑋 ∈ {∅, 𝑋}) |
77 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = {∅, 𝑋} → 𝑦 = {∅, 𝑋}) |
78 | 77 | eqcomd 2831 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = {∅, 𝑋} → {∅, 𝑋} = 𝑦) |
79 | 78 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → {∅, 𝑋} = 𝑦) |
80 | 76, 79 | eleqtrd 2908 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = {∅, 𝑋}) → 𝑋 ∈ 𝑦) |
81 | 69, 75, 80 | syl2anc 581 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 = {𝑋}) → 𝑋 ∈ 𝑦) |
82 | 68, 81 | pm2.61dan 849 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑋 ∈ 𝑦) |
83 | 82 | adantlr 708 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑦) ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑋 ∈ 𝑦) |
84 | | simplr 787 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑦) ∧ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → ¬ 𝑋 ∈ 𝑦) |
85 | 83, 84 | pm2.65da 853 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑦) → ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
86 | 85 | adantlr 708 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) |
87 | | elunnel2 40016 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ({∅, {∅}}
∪ {{𝑋}, {∅, 𝑋}}) ∧ ¬ 𝑦 ∈ {{𝑋}, {∅, 𝑋}}) → 𝑦 ∈ {∅,
{∅}}) |
88 | 61, 86, 87 | syl2anc 581 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → 𝑦 ∈ {∅,
{∅}}) |
89 | | unieq 4666 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∪ ∅) |
90 | | uni0 4687 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
91 | 90 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → ∪ ∅ = ∅) |
92 | 89, 91 | eqtrd 2861 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∅) |
93 | 92 | adantl 475 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, {∅}}
∧ 𝑦 = ∅) →
∪ 𝑦 = ∅) |
94 | | simpl 476 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ 𝑦 ∈ {∅,
{∅}}) |
95 | 27 | adantl 475 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ 𝑦 ≠
∅) |
96 | | elprn1 40660 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ {∅, {∅}}
∧ 𝑦 ≠ ∅)
→ 𝑦 =
{∅}) |
97 | 94, 95, 96 | syl2anc 581 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ 𝑦 =
{∅}) |
98 | | unieq 4666 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ∪ 𝑦 =
∪ {∅}) |
99 | 1 | unisn 4674 |
. . . . . . . . . . . 12
⊢ ∪ {∅} = ∅ |
100 | 99 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ∪ {∅} = ∅) |
101 | 98, 100 | eqtrd 2861 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → ∪ 𝑦 =
∅) |
102 | 97, 101 | syl 17 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {∅, {∅}}
∧ ¬ 𝑦 = ∅)
→ ∪ 𝑦 = ∅) |
103 | 93, 102 | pm2.61dan 849 |
. . . . . . . 8
⊢ (𝑦 ∈ {∅, {∅}}
→ ∪ 𝑦 = ∅) |
104 | 88, 103 | syl 17 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∪ 𝑦 = ∅) |
105 | 2 | a1i 11 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∅ ∈ {∅, 𝑋}) |
106 | 104, 105 | eqeltrd 2906 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) ∧ ¬ 𝑋 ∈ 𝑦) → ∪ 𝑦 ∈ {∅, 𝑋}) |
107 | 56, 106 | pm2.61dan 849 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → ∪ 𝑦 ∈ {∅, 𝑋}) |
108 | 107 | a1d 25 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 {∅, 𝑋}) → (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})) |
109 | 108 | ralrimiva 3175 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ 𝒫 {∅, 𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})) |
110 | 3, 42, 109 | 3jca 1164 |
. 2
⊢ (𝑋 ∈ 𝑉 → (∅ ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ {∅, 𝑋} (∪
{∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅,
𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋}))) |
111 | | prex 5130 |
. . . 4
⊢ {∅,
𝑋} ∈
V |
112 | 111 | a1i 11 |
. . 3
⊢ (𝑋 ∈ 𝑉 → {∅, 𝑋} ∈ V) |
113 | | issal 41325 |
. . 3
⊢
({∅, 𝑋} ∈
V → ({∅, 𝑋}
∈ SAlg ↔ (∅ ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ {∅, 𝑋} (∪ {∅,
𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅,
𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})))) |
114 | 112, 113 | syl 17 |
. 2
⊢ (𝑋 ∈ 𝑉 → ({∅, 𝑋} ∈ SAlg ↔ (∅ ∈
{∅, 𝑋} ∧
∀𝑦 ∈ {∅,
𝑋} (∪ {∅, 𝑋} ∖ 𝑦) ∈ {∅, 𝑋} ∧ ∀𝑦 ∈ 𝒫 {∅, 𝑋} (𝑦 ≼ ω → ∪ 𝑦
∈ {∅, 𝑋})))) |
115 | 110, 114 | mpbird 249 |
1
⊢ (𝑋 ∈ 𝑉 → {∅, 𝑋} ∈ SAlg) |