| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn3 | Structured version Visualization version GIF version | ||
| Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
| Ref | Expression |
|---|---|
| unisn3 | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsn 4671 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = {𝐴}) | |
| 2 | 1 | unieqd 4869 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = ∪ {𝐴}) |
| 3 | unisng 4874 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝐴} = 𝐴) | |
| 4 | 2, 3 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 {csn 4573 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |