MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn3 Structured version   Visualization version   GIF version

Theorem unisn3 4821
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 4617 . . 3 (𝐴𝐵 → {𝑥𝐵𝑥 = 𝐴} = {𝐴})
21unieqd 4814 . 2 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = {𝐴})
3 unisng 4819 . 2 (𝐴𝐵 {𝐴} = 𝐴)
42, 3eqtrd 2833 1 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {crab 3110  {csn 4525   cuni 4800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-uni 4801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator