| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn3 | Structured version Visualization version GIF version | ||
| Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
| Ref | Expression |
|---|---|
| unisn3 | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsn 4685 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = {𝐴}) | |
| 2 | 1 | unieqd 4884 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = ∪ {𝐴}) |
| 3 | unisng 4889 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝐴} = 𝐴) | |
| 4 | 2, 3 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 {csn 4589 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |