MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn3 Structured version   Visualization version   GIF version

Theorem unisn3 4877
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 4671 . . 3 (𝐴𝐵 → {𝑥𝐵𝑥 = 𝐴} = {𝐴})
21unieqd 4869 . 2 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = {𝐴})
3 unisng 4874 . 2 (𝐴𝐵 {𝐴} = 𝐴)
42, 3eqtrd 2766 1 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  {csn 4573   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-un 3902  df-ss 3914  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator