![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsn | Structured version Visualization version GIF version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) (Proof shortened by AV, 26-Aug-2022.) |
Ref | Expression |
---|---|
rabsn | ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | pm5.32ri 577 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵)) |
3 | 2 | baib 537 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
4 | 3 | alrimiv 1931 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
5 | rabeqsn 4632 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵} ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {crab 3410 {csn 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3411 df-sn 4592 |
This theorem is referenced by: unisn3 4894 sylow3lem6 19421 lineunray 34761 pmapat 38255 dia0 39544 nzss 42671 lco0 46582 |
Copyright terms: Public domain | W3C validator |