MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsn Structured version   Visualization version   GIF version

Theorem rabsn 4724
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) (Proof shortened by AV, 26-Aug-2022.)
Assertion
Ref Expression
rabsn (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21pm5.32ri 576 . . . 4 ((𝑥𝐴𝑥 = 𝐵) ↔ (𝐵𝐴𝑥 = 𝐵))
32baib 536 . . 3 (𝐵𝐴 → ((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
43alrimiv 1930 . 2 (𝐵𝐴 → ∀𝑥((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
5 rabeqsn 4668 . 2 ({𝑥𝐴𝑥 = 𝐵} = {𝐵} ↔ ∀𝑥((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
64, 5sylibr 233 1 (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  {crab 3432  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-sn 4628
This theorem is referenced by:  unisn3  4931  sylow3lem6  19494  lineunray  35107  pmapat  38622  dia0  39911  nzss  43061  lco0  47061
  Copyright terms: Public domain W3C validator