![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsn | Structured version Visualization version GIF version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) (Proof shortened by AV, 26-Aug-2022.) |
Ref | Expression |
---|---|
rabsn | ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | pm5.32ri 576 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵)) |
3 | 2 | baib 536 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
4 | 3 | alrimiv 1930 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
5 | rabeqsn 4668 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵} ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {crab 3432 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-sn 4628 |
This theorem is referenced by: unisn3 4931 sylow3lem6 19494 lineunray 35107 pmapat 38622 dia0 39911 nzss 43061 lco0 47061 |
Copyright terms: Public domain | W3C validator |