MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsn Structured version   Visualization version   GIF version

Theorem rabsn 4694
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) (Proof shortened by AV, 26-Aug-2022.)
Assertion
Ref Expression
rabsn (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21pm5.32ri 575 . . . 4 ((𝑥𝐴𝑥 = 𝐵) ↔ (𝐵𝐴𝑥 = 𝐵))
32baib 535 . . 3 (𝐵𝐴 → ((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
43alrimiv 1926 . 2 (𝐵𝐴 → ∀𝑥((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
5 rabeqsn 4640 . 2 ({𝑥𝐴𝑥 = 𝐵} = {𝐵} ↔ ∀𝑥((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
64, 5sylibr 234 1 (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2107  {crab 3413  {csn 4599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-sn 4600
This theorem is referenced by:  unisn3  4901  sylow3lem6  19598  lineunray  36086  pmapat  39703  dia0  40992  nzss  44267  lco0  48289
  Copyright terms: Public domain W3C validator