MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coflim Structured version   Visualization version   GIF version

Theorem coflim 10251
Description: A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
coflim ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem coflim
StepHypRef Expression
1 eleq2 2823 . . . . 5 ( 𝐵 = 𝐴 → (𝑥 𝐵𝑥𝐴))
21biimprd 247 . . . 4 ( 𝐵 = 𝐴 → (𝑥𝐴𝑥 𝐵))
3 eluni2 4910 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
4 limord 6420 . . . . . . . . 9 (Lim 𝐴 → Ord 𝐴)
5 ssel2 3975 . . . . . . . . 9 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
6 ordelon 6384 . . . . . . . . 9 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
74, 5, 6syl2an 597 . . . . . . . 8 ((Lim 𝐴 ∧ (𝐵𝐴𝑦𝐵)) → 𝑦 ∈ On)
87expr 458 . . . . . . 7 ((Lim 𝐴𝐵𝐴) → (𝑦𝐵𝑦 ∈ On))
9 onelss 6402 . . . . . . 7 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
108, 9syl6 35 . . . . . 6 ((Lim 𝐴𝐵𝐴) → (𝑦𝐵 → (𝑥𝑦𝑥𝑦)))
1110reximdvai 3166 . . . . 5 ((Lim 𝐴𝐵𝐴) → (∃𝑦𝐵 𝑥𝑦 → ∃𝑦𝐵 𝑥𝑦))
123, 11biimtrid 241 . . . 4 ((Lim 𝐴𝐵𝐴) → (𝑥 𝐵 → ∃𝑦𝐵 𝑥𝑦))
132, 12syl9r 78 . . 3 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦)))
1413ralrimdv 3153 . 2 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
15 uniss 4914 . . . . . 6 (𝐵𝐴 𝐵 𝐴)
16153ad2ant2 1135 . . . . 5 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 𝐴)
17 uniss2 4943 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
18173ad2ant3 1136 . . . . 5 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 𝐵)
1916, 18eqssd 3997 . . . 4 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 = 𝐴)
20 limuni 6421 . . . . 5 (Lim 𝐴𝐴 = 𝐴)
21203ad2ant1 1134 . . . 4 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 = 𝐴)
2219, 21eqtr4d 2776 . . 3 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 = 𝐴)
23223expia 1122 . 2 ((Lim 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐵 = 𝐴))
2414, 23impbid 211 1 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  wss 3946   cuni 4906  Ord word 6359  Oncon0 6360  Lim wlim 6361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-tr 5264  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-ord 6363  df-on 6364  df-lim 6365
This theorem is referenced by:  cflim3  10252  pwcfsdom  10573
  Copyright terms: Public domain W3C validator