MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coflim Structured version   Visualization version   GIF version

Theorem coflim 10275
Description: A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
coflim ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem coflim
StepHypRef Expression
1 eleq2 2823 . . . . 5 ( 𝐵 = 𝐴 → (𝑥 𝐵𝑥𝐴))
21biimprd 248 . . . 4 ( 𝐵 = 𝐴 → (𝑥𝐴𝑥 𝐵))
3 eluni2 4887 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
4 limord 6413 . . . . . . . . 9 (Lim 𝐴 → Ord 𝐴)
5 ssel2 3953 . . . . . . . . 9 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
6 ordelon 6376 . . . . . . . . 9 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
74, 5, 6syl2an 596 . . . . . . . 8 ((Lim 𝐴 ∧ (𝐵𝐴𝑦𝐵)) → 𝑦 ∈ On)
87expr 456 . . . . . . 7 ((Lim 𝐴𝐵𝐴) → (𝑦𝐵𝑦 ∈ On))
9 onelss 6394 . . . . . . 7 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
108, 9syl6 35 . . . . . 6 ((Lim 𝐴𝐵𝐴) → (𝑦𝐵 → (𝑥𝑦𝑥𝑦)))
1110reximdvai 3151 . . . . 5 ((Lim 𝐴𝐵𝐴) → (∃𝑦𝐵 𝑥𝑦 → ∃𝑦𝐵 𝑥𝑦))
123, 11biimtrid 242 . . . 4 ((Lim 𝐴𝐵𝐴) → (𝑥 𝐵 → ∃𝑦𝐵 𝑥𝑦))
132, 12syl9r 78 . . 3 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦)))
1413ralrimdv 3138 . 2 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
15 uniss 4891 . . . . . 6 (𝐵𝐴 𝐵 𝐴)
16153ad2ant2 1134 . . . . 5 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 𝐴)
17 uniss2 4917 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
18173ad2ant3 1135 . . . . 5 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 𝐵)
1916, 18eqssd 3976 . . . 4 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 = 𝐴)
20 limuni 6414 . . . . 5 (Lim 𝐴𝐴 = 𝐴)
21203ad2ant1 1133 . . . 4 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 = 𝐴)
2219, 21eqtr4d 2773 . . 3 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 = 𝐴)
23223expia 1121 . 2 ((Lim 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐵 = 𝐴))
2414, 23impbid 212 1 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   cuni 4883  Ord word 6351  Oncon0 6352  Lim wlim 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357
This theorem is referenced by:  cflim3  10276  pwcfsdom  10597
  Copyright terms: Public domain W3C validator