Proof of Theorem coflim
Step | Hyp | Ref
| Expression |
1 | | eleq2 2841 |
. . . . 5
⊢ (∪ 𝐵 =
𝐴 → (𝑥 ∈ ∪ 𝐵
↔ 𝑥 ∈ 𝐴)) |
2 | 1 | biimprd 251 |
. . . 4
⊢ (∪ 𝐵 =
𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
3 | | eluni2 4803 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐵
↔ ∃𝑦 ∈
𝐵 𝑥 ∈ 𝑦) |
4 | | limord 6229 |
. . . . . . . . 9
⊢ (Lim
𝐴 → Ord 𝐴) |
5 | | ssel2 3888 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴) |
6 | | ordelon 6194 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
7 | 4, 5, 6 | syl2an 599 |
. . . . . . . 8
⊢ ((Lim
𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ On) |
8 | 7 | expr 461 |
. . . . . . 7
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
9 | | onelss 6212 |
. . . . . . 7
⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) |
10 | 8, 9 | syl6 35 |
. . . . . 6
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦))) |
11 | 10 | reximdvai 3197 |
. . . . 5
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
12 | 3, 11 | syl5bi 245 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ ∪ 𝐵 → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
13 | 2, 12 | syl9r 78 |
. . 3
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
14 | 13 | ralrimdv 3118 |
. 2
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
15 | | uniss 4807 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴) |
16 | 15 | 3ad2ant2 1132 |
. . . . 5
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) → ∪ 𝐵 ⊆ ∪ 𝐴) |
17 | | uniss2 4834 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
18 | 17 | 3ad2ant3 1133 |
. . . . 5
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) → ∪ 𝐴 ⊆ ∪ 𝐵) |
19 | 16, 18 | eqssd 3910 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) → ∪ 𝐵 = ∪
𝐴) |
20 | | limuni 6230 |
. . . . 5
⊢ (Lim
𝐴 → 𝐴 = ∪ 𝐴) |
21 | 20 | 3ad2ant1 1131 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) → 𝐴 = ∪ 𝐴) |
22 | 19, 21 | eqtr4d 2797 |
. . 3
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) → ∪ 𝐵 = 𝐴) |
23 | 22 | 3expia 1119 |
. 2
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐵 = 𝐴)) |
24 | 14, 23 | impbid 215 |
1
⊢ ((Lim
𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |