MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss2 Structured version   Visualization version   GIF version

Theorem iunss2 5013
Description: A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4905. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 5010 . . 3 (∃𝑦𝐵 𝐶𝐷𝐶 𝑦𝐵 𝐷)
21ralimi 3066 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ∀𝑥𝐴 𝐶 𝑦𝐵 𝐷)
3 iunss 5009 . 2 ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷 ↔ ∀𝑥𝐴 𝐶 𝑦𝐵 𝐷)
42, 3sylibr 234 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3044  wrex 3053  wss 3914   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-iun 4957
This theorem is referenced by:  iunxdif2  5017  oaass  8525  odi  8543  omass  8544  oelim2  8559  cotrclrcl  43731  founiiun  45173  founiiun0  45184  ovnsubaddlem1  46568
  Copyright terms: Public domain W3C validator