Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunss2 | Structured version Visualization version GIF version |
Description: A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4874. (Contributed by NM, 9-Dec-2004.) |
Ref | Expression |
---|---|
iunss2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun 4976 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) | |
2 | 1 | ralimi 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) |
3 | iunss 4975 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: iunxdif2 4983 oaass 8392 odi 8410 omass 8411 oelim2 8426 cotrclrcl 41350 founiiun 42715 founiiun0 42728 ovnsubaddlem1 44108 |
Copyright terms: Public domain | W3C validator |