Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunss2 | Structured version Visualization version GIF version |
Description: A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4871. (Contributed by NM, 9-Dec-2004.) |
Ref | Expression |
---|---|
iunss2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun 4972 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) | |
2 | 1 | ralimi 3086 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) |
3 | iunss 4971 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: iunxdif2 4979 oaass 8354 odi 8372 omass 8373 oelim2 8388 cotrclrcl 41239 founiiun 42604 founiiun0 42617 ovnsubaddlem1 43998 |
Copyright terms: Public domain | W3C validator |