MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissel Structured version   Visualization version   GIF version

Theorem unissel 4941
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)

Proof of Theorem unissel
StepHypRef Expression
1 simpl 481 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
2 elssuni 4940 . . 3 (𝐵𝐴𝐵 𝐴)
32adantl 480 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐵 𝐴)
41, 3eqssd 3998 1 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wss 3947   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-in 3954  df-ss 3964  df-uni 4908
This theorem is referenced by:  elpwuni  5107  mretopd  22816  toponmre  22817  neiptopuni  22854  filunibas  23605  unidmvol  25290  unicls  33181  carsguni  33605  onintunirab  42278
  Copyright terms: Public domain W3C validator