MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissel Structured version   Visualization version   GIF version

Theorem unissel 4831
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)

Proof of Theorem unissel
StepHypRef Expression
1 simpl 486 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
2 elssuni 4830 . . 3 (𝐵𝐴𝐵 𝐴)
32adantl 485 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐵 𝐴)
41, 3eqssd 3909 1 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3858   cuni 4798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-in 3865  df-ss 3875  df-uni 4799
This theorem is referenced by:  elpwuni  4992  mretopd  21792  toponmre  21793  neiptopuni  21830  filunibas  22581  unidmvol  24241  unicls  31374  carsguni  31794
  Copyright terms: Public domain W3C validator