MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissel Structured version   Visualization version   GIF version

Theorem unissel 4869
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)

Proof of Theorem unissel
StepHypRef Expression
1 simpl 482 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
2 elssuni 4868 . . 3 (𝐵𝐴𝐵 𝐴)
32adantl 481 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐵 𝐴)
41, 3eqssd 3934 1 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837
This theorem is referenced by:  elpwuni  5030  mretopd  22151  toponmre  22152  neiptopuni  22189  filunibas  22940  unidmvol  24610  unicls  31755  carsguni  32175
  Copyright terms: Public domain W3C validator