MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissel Structured version   Visualization version   GIF version

Theorem unissel 4938
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)

Proof of Theorem unissel
StepHypRef Expression
1 simpl 482 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
2 elssuni 4937 . . 3 (𝐵𝐴𝐵 𝐴)
32adantl 481 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐵 𝐴)
41, 3eqssd 4001 1 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-ss 3968  df-uni 4908
This theorem is referenced by:  elpwuni  5105  mretopd  23100  toponmre  23101  neiptopuni  23138  filunibas  23889  unidmvol  25576  unicls  33902  carsguni  34310  onintunirab  43239
  Copyright terms: Public domain W3C validator