| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissel | Structured version Visualization version GIF version | ||
| Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| unissel | ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 ⊆ 𝐵) | |
| 2 | elssuni 4918 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝐴) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝐴) |
| 4 | 1, 3 | eqssd 3981 | 1 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 |
| This theorem is referenced by: elpwuni 5086 mretopd 23035 toponmre 23036 neiptopuni 23073 filunibas 23824 unidmvol 25499 unicls 33939 carsguni 34345 onintunirab 43218 |
| Copyright terms: Public domain | W3C validator |