|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > unissel | Structured version Visualization version GIF version | ||
| Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.) | 
| Ref | Expression | 
|---|---|
| unissel | ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 ⊆ 𝐵) | |
| 2 | elssuni 4937 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝐴) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝐴) | 
| 4 | 1, 3 | eqssd 4001 | 1 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ∪ cuni 4907 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-ss 3968 df-uni 4908 | 
| This theorem is referenced by: elpwuni 5105 mretopd 23100 toponmre 23101 neiptopuni 23138 filunibas 23889 unidmvol 25576 unicls 33902 carsguni 34310 onintunirab 43239 | 
| Copyright terms: Public domain | W3C validator |