Step | Hyp | Ref
| Expression |
1 | | unieq 4668 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → ∪ 𝑎 =
∪ ∅) |
2 | | uni0 4689 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
3 | 1, 2 | syl6eq 2877 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ∪ 𝑎 =
∅) |
4 | 3 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑎 = ∅ → (∪ 𝑎
∈ 𝐽 ↔ ∅
∈ 𝐽)) |
5 | | mretopd.j |
. . . . . . . . . . . . . 14
⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} |
6 | | ssrab2 3914 |
. . . . . . . . . . . . . 14
⊢ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ⊆ 𝒫 𝐵 |
7 | 5, 6 | eqsstri 3860 |
. . . . . . . . . . . . 13
⊢ 𝐽 ⊆ 𝒫 𝐵 |
8 | | sstr 3835 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝐵) → 𝑎 ⊆ 𝒫 𝐵) |
9 | 7, 8 | mpan2 682 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐽 → 𝑎 ⊆ 𝒫 𝐵) |
10 | 9 | adantl 475 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → 𝑎 ⊆ 𝒫 𝐵) |
11 | | sspwuni 4834 |
. . . . . . . . . . 11
⊢ (𝑎 ⊆ 𝒫 𝐵 ↔ ∪ 𝑎
⊆ 𝐵) |
12 | 10, 11 | sylib 210 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∪ 𝑎 ⊆ 𝐵) |
13 | | vuniex 7219 |
. . . . . . . . . . 11
⊢ ∪ 𝑎
∈ V |
14 | 13 | elpw 4386 |
. . . . . . . . . 10
⊢ (∪ 𝑎
∈ 𝒫 𝐵 ↔
∪ 𝑎 ⊆ 𝐵) |
15 | 12, 14 | sylibr 226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∪ 𝑎 ∈ 𝒫 𝐵) |
16 | 15 | adantr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∪ 𝑎
∈ 𝒫 𝐵) |
17 | | uniiun 4795 |
. . . . . . . . . 10
⊢ ∪ 𝑎 =
∪ 𝑏 ∈ 𝑎 𝑏 |
18 | 17 | difeq2i 3954 |
. . . . . . . . 9
⊢ (𝐵 ∖ ∪ 𝑎) =
(𝐵 ∖ ∪ 𝑏 ∈ 𝑎 𝑏) |
19 | | iindif2 4811 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ ∅ → ∩ 𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) = (𝐵 ∖ ∪
𝑏 ∈ 𝑎 𝑏)) |
20 | 19 | adantl 475 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∩ 𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) = (𝐵 ∖ ∪
𝑏 ∈ 𝑎 𝑏)) |
21 | | mretopd.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (Moore‘𝐵)) |
22 | 21 | ad2antrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → 𝑀 ∈ (Moore‘𝐵)) |
23 | | simpr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) |
24 | | difeq2 3951 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑏 → (𝐵 ∖ 𝑧) = (𝐵 ∖ 𝑏)) |
25 | 24 | eleq1d 2891 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑏 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ 𝑏) ∈ 𝑀)) |
26 | 25, 5 | elrab2 3589 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝐽 ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝐵 ∖ 𝑏) ∈ 𝑀)) |
27 | 26 | simprbi 492 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐽 → (𝐵 ∖ 𝑏) ∈ 𝑀) |
28 | 27 | rgen 3131 |
. . . . . . . . . . . . 13
⊢
∀𝑏 ∈
𝐽 (𝐵 ∖ 𝑏) ∈ 𝑀 |
29 | | ssralv 3891 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ⊆ 𝐽 → (∀𝑏 ∈ 𝐽 (𝐵 ∖ 𝑏) ∈ 𝑀 → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀)) |
30 | 29 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → (∀𝑏 ∈ 𝐽 (𝐵 ∖ 𝑏) ∈ 𝑀 → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀)) |
31 | 28, 30 | mpi 20 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
32 | 31 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
33 | | mreiincl 16616 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Moore‘𝐵) ∧ 𝑎 ≠ ∅ ∧ ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) → ∩
𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
34 | 22, 23, 32, 33 | syl3anc 1494 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∩ 𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
35 | 20, 34 | eqeltrrd 2907 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 ∖ ∪
𝑏 ∈ 𝑎 𝑏) ∈ 𝑀) |
36 | 18, 35 | syl5eqel 2910 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 ∖ ∪ 𝑎) ∈ 𝑀) |
37 | | difeq2 3951 |
. . . . . . . . . 10
⊢ (𝑧 = ∪
𝑎 → (𝐵 ∖ 𝑧) = (𝐵 ∖ ∪ 𝑎)) |
38 | 37 | eleq1d 2891 |
. . . . . . . . 9
⊢ (𝑧 = ∪
𝑎 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ ∪ 𝑎) ∈ 𝑀)) |
39 | 38, 5 | elrab2 3589 |
. . . . . . . 8
⊢ (∪ 𝑎
∈ 𝐽 ↔ (∪ 𝑎
∈ 𝒫 𝐵 ∧
(𝐵 ∖ ∪ 𝑎)
∈ 𝑀)) |
40 | 16, 36, 39 | sylanbrc 578 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∪ 𝑎
∈ 𝐽) |
41 | | 0elpw 5058 |
. . . . . . . . . 10
⊢ ∅
∈ 𝒫 𝐵 |
42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ 𝒫
𝐵) |
43 | | mre1cl 16614 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (Moore‘𝐵) → 𝐵 ∈ 𝑀) |
44 | 21, 43 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝑀) |
45 | | difeq2 3951 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → (𝐵 ∖ 𝑧) = (𝐵 ∖ ∅)) |
46 | | dif0 4182 |
. . . . . . . . . . . 12
⊢ (𝐵 ∖ ∅) = 𝐵 |
47 | 45, 46 | syl6eq 2877 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝐵 ∖ 𝑧) = 𝐵) |
48 | 47 | eleq1d 2891 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ 𝐵 ∈ 𝑀)) |
49 | 48, 5 | elrab2 3589 |
. . . . . . . . 9
⊢ (∅
∈ 𝐽 ↔ (∅
∈ 𝒫 𝐵 ∧
𝐵 ∈ 𝑀)) |
50 | 42, 44, 49 | sylanbrc 578 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐽) |
51 | 50 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∅ ∈ 𝐽) |
52 | 4, 40, 51 | pm2.61ne 3084 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∪ 𝑎 ∈ 𝐽) |
53 | 52 | ex 403 |
. . . . 5
⊢ (𝜑 → (𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽)) |
54 | 53 | alrimiv 2026 |
. . . 4
⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽)) |
55 | | inss1 4059 |
. . . . . . . 8
⊢ (𝑎 ∩ 𝑏) ⊆ 𝑎 |
56 | | difeq2 3951 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑎 → (𝐵 ∖ 𝑧) = (𝐵 ∖ 𝑎)) |
57 | 56 | eleq1d 2891 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑎 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ 𝑎) ∈ 𝑀)) |
58 | 57, 5 | elrab2 3589 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ 𝒫 𝐵 ∧ (𝐵 ∖ 𝑎) ∈ 𝑀)) |
59 | 58 | simplbi 493 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ 𝒫 𝐵) |
60 | 59 | elpwid 4392 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐽 → 𝑎 ⊆ 𝐵) |
61 | 60 | ad2antrl 719 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → 𝑎 ⊆ 𝐵) |
62 | 55, 61 | syl5ss 3838 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝑎 ∩ 𝑏) ⊆ 𝐵) |
63 | | vex 3417 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
64 | 63 | inex1 5026 |
. . . . . . . 8
⊢ (𝑎 ∩ 𝑏) ∈ V |
65 | 64 | elpw 4386 |
. . . . . . 7
⊢ ((𝑎 ∩ 𝑏) ∈ 𝒫 𝐵 ↔ (𝑎 ∩ 𝑏) ⊆ 𝐵) |
66 | 62, 65 | sylibr 226 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝑎 ∩ 𝑏) ∈ 𝒫 𝐵) |
67 | | difindi 4113 |
. . . . . . 7
⊢ (𝐵 ∖ (𝑎 ∩ 𝑏)) = ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) |
68 | 58 | simprbi 492 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐽 → (𝐵 ∖ 𝑎) ∈ 𝑀) |
69 | 68 | ad2antrl 719 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝐵 ∖ 𝑎) ∈ 𝑀) |
70 | 27 | ad2antll 720 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝐵 ∖ 𝑏) ∈ 𝑀) |
71 | | simpl 476 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → 𝜑) |
72 | | uneq1 3989 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐵 ∖ 𝑎) → (𝑥 ∪ 𝑦) = ((𝐵 ∖ 𝑎) ∪ 𝑦)) |
73 | 72 | eleq1d 2891 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐵 ∖ 𝑎) → ((𝑥 ∪ 𝑦) ∈ 𝑀 ↔ ((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀)) |
74 | 73 | imbi2d 332 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐵 ∖ 𝑎) → ((𝜑 → (𝑥 ∪ 𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀))) |
75 | | uneq2 3990 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐵 ∖ 𝑏) → ((𝐵 ∖ 𝑎) ∪ 𝑦) = ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏))) |
76 | 75 | eleq1d 2891 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐵 ∖ 𝑏) → (((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀 ↔ ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀)) |
77 | 76 | imbi2d 332 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐵 ∖ 𝑏) → ((𝜑 → ((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀))) |
78 | | mretopd.u |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀) → (𝑥 ∪ 𝑦) ∈ 𝑀) |
79 | 78 | 3expb 1153 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥 ∪ 𝑦) ∈ 𝑀) |
80 | 79 | expcom 404 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀) → (𝜑 → (𝑥 ∪ 𝑦) ∈ 𝑀)) |
81 | 74, 77, 80 | vtocl2ga 3491 |
. . . . . . . . 9
⊢ (((𝐵 ∖ 𝑎) ∈ 𝑀 ∧ (𝐵 ∖ 𝑏) ∈ 𝑀) → (𝜑 → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀)) |
82 | 81 | imp 397 |
. . . . . . . 8
⊢ ((((𝐵 ∖ 𝑎) ∈ 𝑀 ∧ (𝐵 ∖ 𝑏) ∈ 𝑀) ∧ 𝜑) → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀) |
83 | 69, 70, 71, 82 | syl21anc 871 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀) |
84 | 67, 83 | syl5eqel 2910 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝐵 ∖ (𝑎 ∩ 𝑏)) ∈ 𝑀) |
85 | | difeq2 3951 |
. . . . . . . 8
⊢ (𝑧 = (𝑎 ∩ 𝑏) → (𝐵 ∖ 𝑧) = (𝐵 ∖ (𝑎 ∩ 𝑏))) |
86 | 85 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑧 = (𝑎 ∩ 𝑏) → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝑎 ∩ 𝑏)) ∈ 𝑀)) |
87 | 86, 5 | elrab2 3589 |
. . . . . 6
⊢ ((𝑎 ∩ 𝑏) ∈ 𝐽 ↔ ((𝑎 ∩ 𝑏) ∈ 𝒫 𝐵 ∧ (𝐵 ∖ (𝑎 ∩ 𝑏)) ∈ 𝑀)) |
88 | 66, 84, 87 | sylanbrc 578 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝑎 ∩ 𝑏) ∈ 𝐽) |
89 | 88 | ralrimivva 3180 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝐽 ∀𝑏 ∈ 𝐽 (𝑎 ∩ 𝑏) ∈ 𝐽) |
90 | 44 | pwexd 5081 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
91 | 5, 90 | rabexd 5040 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ V) |
92 | | istopg 21077 |
. . . . 5
⊢ (𝐽 ∈ V → (𝐽 ∈ Top ↔
(∀𝑎(𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽) ∧ ∀𝑎 ∈ 𝐽 ∀𝑏 ∈ 𝐽 (𝑎 ∩ 𝑏) ∈ 𝐽))) |
93 | 91, 92 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ Top ↔ (∀𝑎(𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽) ∧ ∀𝑎 ∈ 𝐽 ∀𝑏 ∈ 𝐽 (𝑎 ∩ 𝑏) ∈ 𝐽))) |
94 | 54, 89, 93 | mpbir2and 704 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Top) |
95 | 7 | unissi 4685 |
. . . . . 6
⊢ ∪ 𝐽
⊆ ∪ 𝒫 𝐵 |
96 | | unipw 5141 |
. . . . . 6
⊢ ∪ 𝒫 𝐵 = 𝐵 |
97 | 95, 96 | sseqtri 3862 |
. . . . 5
⊢ ∪ 𝐽
⊆ 𝐵 |
98 | | pwidg 4395 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑀 → 𝐵 ∈ 𝒫 𝐵) |
99 | 44, 98 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
100 | | difid 4180 |
. . . . . . 7
⊢ (𝐵 ∖ 𝐵) = ∅ |
101 | | mretopd.z |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ 𝑀) |
102 | 100, 101 | syl5eqel 2910 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∖ 𝐵) ∈ 𝑀) |
103 | | difeq2 3951 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐵 ∖ 𝑧) = (𝐵 ∖ 𝐵)) |
104 | 103 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ 𝐵) ∈ 𝑀)) |
105 | 104, 5 | elrab2 3589 |
. . . . . 6
⊢ (𝐵 ∈ 𝐽 ↔ (𝐵 ∈ 𝒫 𝐵 ∧ (𝐵 ∖ 𝐵) ∈ 𝑀)) |
106 | 99, 102, 105 | sylanbrc 578 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝐽) |
107 | | unissel 4692 |
. . . . 5
⊢ ((∪ 𝐽
⊆ 𝐵 ∧ 𝐵 ∈ 𝐽) → ∪ 𝐽 = 𝐵) |
108 | 97, 106, 107 | sylancr 581 |
. . . 4
⊢ (𝜑 → ∪ 𝐽 =
𝐵) |
109 | 108 | eqcomd 2831 |
. . 3
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
110 | | istopon 21094 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
111 | 94, 109, 110 | sylanbrc 578 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
112 | | eqid 2825 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
113 | 112 | cldval 21205 |
. . . 4
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) = {𝑥 ∈ 𝒫 ∪ 𝐽
∣ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽}) |
114 | 94, 113 | syl 17 |
. . 3
⊢ (𝜑 → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 ∪ 𝐽
∣ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽}) |
115 | 108 | pweqd 4385 |
. . . 4
⊢ (𝜑 → 𝒫 ∪ 𝐽 =
𝒫 𝐵) |
116 | 108 | difeq1d 3956 |
. . . . 5
⊢ (𝜑 → (∪ 𝐽
∖ 𝑥) = (𝐵 ∖ 𝑥)) |
117 | 116 | eleq1d 2891 |
. . . 4
⊢ (𝜑 → ((∪ 𝐽
∖ 𝑥) ∈ 𝐽 ↔ (𝐵 ∖ 𝑥) ∈ 𝐽)) |
118 | 115, 117 | rabeqbidv 3408 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝒫 ∪ 𝐽
∣ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑥) ∈ 𝐽}) |
119 | 5 | eleq2i 2898 |
. . . . . . 7
⊢ ((𝐵 ∖ 𝑥) ∈ 𝐽 ↔ (𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀}) |
120 | | difss 3966 |
. . . . . . . . . 10
⊢ (𝐵 ∖ 𝑥) ⊆ 𝐵 |
121 | | elpw2g 5051 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑀 → ((𝐵 ∖ 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∖ 𝑥) ⊆ 𝐵)) |
122 | 44, 121 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 ∖ 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∖ 𝑥) ⊆ 𝐵)) |
123 | 120, 122 | mpbiri 250 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∖ 𝑥) ∈ 𝒫 𝐵) |
124 | | difeq2 3951 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐵 ∖ 𝑥) → (𝐵 ∖ 𝑧) = (𝐵 ∖ (𝐵 ∖ 𝑥))) |
125 | 124 | eleq1d 2891 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐵 ∖ 𝑥) → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
126 | 125 | elrab3 3587 |
. . . . . . . . 9
⊢ ((𝐵 ∖ 𝑥) ∈ 𝒫 𝐵 → ((𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
127 | 123, 126 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
128 | 127 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
129 | 119, 128 | syl5bb 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑥) ∈ 𝐽 ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
130 | | elpwi 4390 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵) |
131 | | dfss4 4090 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) = 𝑥) |
132 | 130, 131 | sylib 210 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑥)) = 𝑥) |
133 | 132 | adantl 475 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵 ∖ 𝑥)) = 𝑥) |
134 | 133 | eleq1d 2891 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀 ↔ 𝑥 ∈ 𝑀)) |
135 | 129, 134 | bitrd 271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝑀)) |
136 | 135 | rabbidva 3401 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀}) |
137 | | incom 4034 |
. . . . . 6
⊢ (𝑀 ∩ 𝒫 𝐵) = (𝒫 𝐵 ∩ 𝑀) |
138 | | dfin5 3806 |
. . . . . 6
⊢
(𝒫 𝐵 ∩
𝑀) = {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀} |
139 | 137, 138 | eqtri 2849 |
. . . . 5
⊢ (𝑀 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀} |
140 | | mresspw 16612 |
. . . . . . 7
⊢ (𝑀 ∈ (Moore‘𝐵) → 𝑀 ⊆ 𝒫 𝐵) |
141 | 21, 140 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ⊆ 𝒫 𝐵) |
142 | | df-ss 3812 |
. . . . . 6
⊢ (𝑀 ⊆ 𝒫 𝐵 ↔ (𝑀 ∩ 𝒫 𝐵) = 𝑀) |
143 | 141, 142 | sylib 210 |
. . . . 5
⊢ (𝜑 → (𝑀 ∩ 𝒫 𝐵) = 𝑀) |
144 | 139, 143 | syl5eqr 2875 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀} = 𝑀) |
145 | 136, 144 | eqtrd 2861 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑥) ∈ 𝐽} = 𝑀) |
146 | 114, 118,
145 | 3eqtrrd 2866 |
. 2
⊢ (𝜑 → 𝑀 = (Clsd‘𝐽)) |
147 | 111, 146 | jca 507 |
1
⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽))) |