MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mretopd Structured version   Visualization version   GIF version

Theorem mretopd 21274
Description: A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
mretopd.m (𝜑𝑀 ∈ (Moore‘𝐵))
mretopd.z (𝜑 → ∅ ∈ 𝑀)
mretopd.u ((𝜑𝑥𝑀𝑦𝑀) → (𝑥𝑦) ∈ 𝑀)
mretopd.j 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀}
Assertion
Ref Expression
mretopd (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝐵,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem mretopd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4668 . . . . . . . . 9 (𝑎 = ∅ → 𝑎 = ∅)
2 uni0 4689 . . . . . . . . 9 ∅ = ∅
31, 2syl6eq 2877 . . . . . . . 8 (𝑎 = ∅ → 𝑎 = ∅)
43eleq1d 2891 . . . . . . 7 (𝑎 = ∅ → ( 𝑎𝐽 ↔ ∅ ∈ 𝐽))
5 mretopd.j . . . . . . . . . . . . . 14 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀}
6 ssrab2 3914 . . . . . . . . . . . . . 14 {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ⊆ 𝒫 𝐵
75, 6eqsstri 3860 . . . . . . . . . . . . 13 𝐽 ⊆ 𝒫 𝐵
8 sstr 3835 . . . . . . . . . . . . 13 ((𝑎𝐽𝐽 ⊆ 𝒫 𝐵) → 𝑎 ⊆ 𝒫 𝐵)
97, 8mpan2 682 . . . . . . . . . . . 12 (𝑎𝐽𝑎 ⊆ 𝒫 𝐵)
109adantl 475 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → 𝑎 ⊆ 𝒫 𝐵)
11 sspwuni 4834 . . . . . . . . . . 11 (𝑎 ⊆ 𝒫 𝐵 𝑎𝐵)
1210, 11sylib 210 . . . . . . . . . 10 ((𝜑𝑎𝐽) → 𝑎𝐵)
13 vuniex 7219 . . . . . . . . . . 11 𝑎 ∈ V
1413elpw 4386 . . . . . . . . . 10 ( 𝑎 ∈ 𝒫 𝐵 𝑎𝐵)
1512, 14sylibr 226 . . . . . . . . 9 ((𝜑𝑎𝐽) → 𝑎 ∈ 𝒫 𝐵)
1615adantr 474 . . . . . . . 8 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑎 ∈ 𝒫 𝐵)
17 uniiun 4795 . . . . . . . . . 10 𝑎 = 𝑏𝑎 𝑏
1817difeq2i 3954 . . . . . . . . 9 (𝐵 𝑎) = (𝐵 𝑏𝑎 𝑏)
19 iindif2 4811 . . . . . . . . . . 11 (𝑎 ≠ ∅ → 𝑏𝑎 (𝐵𝑏) = (𝐵 𝑏𝑎 𝑏))
2019adantl 475 . . . . . . . . . 10 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑏𝑎 (𝐵𝑏) = (𝐵 𝑏𝑎 𝑏))
21 mretopd.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Moore‘𝐵))
2221ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑀 ∈ (Moore‘𝐵))
23 simpr 479 . . . . . . . . . . 11 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
24 difeq2 3951 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑏 → (𝐵𝑧) = (𝐵𝑏))
2524eleq1d 2891 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑏 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵𝑏) ∈ 𝑀))
2625, 5elrab2 3589 . . . . . . . . . . . . . . 15 (𝑏𝐽 ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝐵𝑏) ∈ 𝑀))
2726simprbi 492 . . . . . . . . . . . . . 14 (𝑏𝐽 → (𝐵𝑏) ∈ 𝑀)
2827rgen 3131 . . . . . . . . . . . . 13 𝑏𝐽 (𝐵𝑏) ∈ 𝑀
29 ssralv 3891 . . . . . . . . . . . . . 14 (𝑎𝐽 → (∀𝑏𝐽 (𝐵𝑏) ∈ 𝑀 → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀))
3029adantl 475 . . . . . . . . . . . . 13 ((𝜑𝑎𝐽) → (∀𝑏𝐽 (𝐵𝑏) ∈ 𝑀 → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀))
3128, 30mpi 20 . . . . . . . . . . . 12 ((𝜑𝑎𝐽) → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
3231adantr 474 . . . . . . . . . . 11 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
33 mreiincl 16616 . . . . . . . . . . 11 ((𝑀 ∈ (Moore‘𝐵) ∧ 𝑎 ≠ ∅ ∧ ∀𝑏𝑎 (𝐵𝑏) ∈ 𝑀) → 𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
3422, 23, 32, 33syl3anc 1494 . . . . . . . . . 10 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑏𝑎 (𝐵𝑏) ∈ 𝑀)
3520, 34eqeltrrd 2907 . . . . . . . . 9 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 𝑏𝑎 𝑏) ∈ 𝑀)
3618, 35syl5eqel 2910 . . . . . . . 8 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 𝑎) ∈ 𝑀)
37 difeq2 3951 . . . . . . . . . 10 (𝑧 = 𝑎 → (𝐵𝑧) = (𝐵 𝑎))
3837eleq1d 2891 . . . . . . . . 9 (𝑧 = 𝑎 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵 𝑎) ∈ 𝑀))
3938, 5elrab2 3589 . . . . . . . 8 ( 𝑎𝐽 ↔ ( 𝑎 ∈ 𝒫 𝐵 ∧ (𝐵 𝑎) ∈ 𝑀))
4016, 36, 39sylanbrc 578 . . . . . . 7 (((𝜑𝑎𝐽) ∧ 𝑎 ≠ ∅) → 𝑎𝐽)
41 0elpw 5058 . . . . . . . . . 10 ∅ ∈ 𝒫 𝐵
4241a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝒫 𝐵)
43 mre1cl 16614 . . . . . . . . . 10 (𝑀 ∈ (Moore‘𝐵) → 𝐵𝑀)
4421, 43syl 17 . . . . . . . . 9 (𝜑𝐵𝑀)
45 difeq2 3951 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝐵𝑧) = (𝐵 ∖ ∅))
46 dif0 4182 . . . . . . . . . . . 12 (𝐵 ∖ ∅) = 𝐵
4745, 46syl6eq 2877 . . . . . . . . . . 11 (𝑧 = ∅ → (𝐵𝑧) = 𝐵)
4847eleq1d 2891 . . . . . . . . . 10 (𝑧 = ∅ → ((𝐵𝑧) ∈ 𝑀𝐵𝑀))
4948, 5elrab2 3589 . . . . . . . . 9 (∅ ∈ 𝐽 ↔ (∅ ∈ 𝒫 𝐵𝐵𝑀))
5042, 44, 49sylanbrc 578 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐽)
5150adantr 474 . . . . . . 7 ((𝜑𝑎𝐽) → ∅ ∈ 𝐽)
524, 40, 51pm2.61ne 3084 . . . . . 6 ((𝜑𝑎𝐽) → 𝑎𝐽)
5352ex 403 . . . . 5 (𝜑 → (𝑎𝐽 𝑎𝐽))
5453alrimiv 2026 . . . 4 (𝜑 → ∀𝑎(𝑎𝐽 𝑎𝐽))
55 inss1 4059 . . . . . . . 8 (𝑎𝑏) ⊆ 𝑎
56 difeq2 3951 . . . . . . . . . . . . 13 (𝑧 = 𝑎 → (𝐵𝑧) = (𝐵𝑎))
5756eleq1d 2891 . . . . . . . . . . . 12 (𝑧 = 𝑎 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵𝑎) ∈ 𝑀))
5857, 5elrab2 3589 . . . . . . . . . . 11 (𝑎𝐽 ↔ (𝑎 ∈ 𝒫 𝐵 ∧ (𝐵𝑎) ∈ 𝑀))
5958simplbi 493 . . . . . . . . . 10 (𝑎𝐽𝑎 ∈ 𝒫 𝐵)
6059elpwid 4392 . . . . . . . . 9 (𝑎𝐽𝑎𝐵)
6160ad2antrl 719 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → 𝑎𝐵)
6255, 61syl5ss 3838 . . . . . . 7 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝑎𝑏) ⊆ 𝐵)
63 vex 3417 . . . . . . . . 9 𝑎 ∈ V
6463inex1 5026 . . . . . . . 8 (𝑎𝑏) ∈ V
6564elpw 4386 . . . . . . 7 ((𝑎𝑏) ∈ 𝒫 𝐵 ↔ (𝑎𝑏) ⊆ 𝐵)
6662, 65sylibr 226 . . . . . 6 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝑎𝑏) ∈ 𝒫 𝐵)
67 difindi 4113 . . . . . . 7 (𝐵 ∖ (𝑎𝑏)) = ((𝐵𝑎) ∪ (𝐵𝑏))
6858simprbi 492 . . . . . . . . 9 (𝑎𝐽 → (𝐵𝑎) ∈ 𝑀)
6968ad2antrl 719 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝐵𝑎) ∈ 𝑀)
7027ad2antll 720 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝐵𝑏) ∈ 𝑀)
71 simpl 476 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → 𝜑)
72 uneq1 3989 . . . . . . . . . . . 12 (𝑥 = (𝐵𝑎) → (𝑥𝑦) = ((𝐵𝑎) ∪ 𝑦))
7372eleq1d 2891 . . . . . . . . . . 11 (𝑥 = (𝐵𝑎) → ((𝑥𝑦) ∈ 𝑀 ↔ ((𝐵𝑎) ∪ 𝑦) ∈ 𝑀))
7473imbi2d 332 . . . . . . . . . 10 (𝑥 = (𝐵𝑎) → ((𝜑 → (𝑥𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵𝑎) ∪ 𝑦) ∈ 𝑀)))
75 uneq2 3990 . . . . . . . . . . . 12 (𝑦 = (𝐵𝑏) → ((𝐵𝑎) ∪ 𝑦) = ((𝐵𝑎) ∪ (𝐵𝑏)))
7675eleq1d 2891 . . . . . . . . . . 11 (𝑦 = (𝐵𝑏) → (((𝐵𝑎) ∪ 𝑦) ∈ 𝑀 ↔ ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀))
7776imbi2d 332 . . . . . . . . . 10 (𝑦 = (𝐵𝑏) → ((𝜑 → ((𝐵𝑎) ∪ 𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀)))
78 mretopd.u . . . . . . . . . . . 12 ((𝜑𝑥𝑀𝑦𝑀) → (𝑥𝑦) ∈ 𝑀)
79783expb 1153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑀𝑦𝑀)) → (𝑥𝑦) ∈ 𝑀)
8079expcom 404 . . . . . . . . . 10 ((𝑥𝑀𝑦𝑀) → (𝜑 → (𝑥𝑦) ∈ 𝑀))
8174, 77, 80vtocl2ga 3491 . . . . . . . . 9 (((𝐵𝑎) ∈ 𝑀 ∧ (𝐵𝑏) ∈ 𝑀) → (𝜑 → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀))
8281imp 397 . . . . . . . 8 ((((𝐵𝑎) ∈ 𝑀 ∧ (𝐵𝑏) ∈ 𝑀) ∧ 𝜑) → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀)
8369, 70, 71, 82syl21anc 871 . . . . . . 7 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → ((𝐵𝑎) ∪ (𝐵𝑏)) ∈ 𝑀)
8467, 83syl5eqel 2910 . . . . . 6 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝐵 ∖ (𝑎𝑏)) ∈ 𝑀)
85 difeq2 3951 . . . . . . . 8 (𝑧 = (𝑎𝑏) → (𝐵𝑧) = (𝐵 ∖ (𝑎𝑏)))
8685eleq1d 2891 . . . . . . 7 (𝑧 = (𝑎𝑏) → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝑎𝑏)) ∈ 𝑀))
8786, 5elrab2 3589 . . . . . 6 ((𝑎𝑏) ∈ 𝐽 ↔ ((𝑎𝑏) ∈ 𝒫 𝐵 ∧ (𝐵 ∖ (𝑎𝑏)) ∈ 𝑀))
8866, 84, 87sylanbrc 578 . . . . 5 ((𝜑 ∧ (𝑎𝐽𝑏𝐽)) → (𝑎𝑏) ∈ 𝐽)
8988ralrimivva 3180 . . . 4 (𝜑 → ∀𝑎𝐽𝑏𝐽 (𝑎𝑏) ∈ 𝐽)
9044pwexd 5081 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
915, 90rabexd 5040 . . . . 5 (𝜑𝐽 ∈ V)
92 istopg 21077 . . . . 5 (𝐽 ∈ V → (𝐽 ∈ Top ↔ (∀𝑎(𝑎𝐽 𝑎𝐽) ∧ ∀𝑎𝐽𝑏𝐽 (𝑎𝑏) ∈ 𝐽)))
9391, 92syl 17 . . . 4 (𝜑 → (𝐽 ∈ Top ↔ (∀𝑎(𝑎𝐽 𝑎𝐽) ∧ ∀𝑎𝐽𝑏𝐽 (𝑎𝑏) ∈ 𝐽)))
9454, 89, 93mpbir2and 704 . . 3 (𝜑𝐽 ∈ Top)
957unissi 4685 . . . . . 6 𝐽 𝒫 𝐵
96 unipw 5141 . . . . . 6 𝒫 𝐵 = 𝐵
9795, 96sseqtri 3862 . . . . 5 𝐽𝐵
98 pwidg 4395 . . . . . . 7 (𝐵𝑀𝐵 ∈ 𝒫 𝐵)
9944, 98syl 17 . . . . . 6 (𝜑𝐵 ∈ 𝒫 𝐵)
100 difid 4180 . . . . . . 7 (𝐵𝐵) = ∅
101 mretopd.z . . . . . . 7 (𝜑 → ∅ ∈ 𝑀)
102100, 101syl5eqel 2910 . . . . . 6 (𝜑 → (𝐵𝐵) ∈ 𝑀)
103 difeq2 3951 . . . . . . . 8 (𝑧 = 𝐵 → (𝐵𝑧) = (𝐵𝐵))
104103eleq1d 2891 . . . . . . 7 (𝑧 = 𝐵 → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵𝐵) ∈ 𝑀))
105104, 5elrab2 3589 . . . . . 6 (𝐵𝐽 ↔ (𝐵 ∈ 𝒫 𝐵 ∧ (𝐵𝐵) ∈ 𝑀))
10699, 102, 105sylanbrc 578 . . . . 5 (𝜑𝐵𝐽)
107 unissel 4692 . . . . 5 (( 𝐽𝐵𝐵𝐽) → 𝐽 = 𝐵)
10897, 106, 107sylancr 581 . . . 4 (𝜑 𝐽 = 𝐵)
109108eqcomd 2831 . . 3 (𝜑𝐵 = 𝐽)
110 istopon 21094 . . 3 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
11194, 109, 110sylanbrc 578 . 2 (𝜑𝐽 ∈ (TopOn‘𝐵))
112 eqid 2825 . . . . 5 𝐽 = 𝐽
113112cldval 21205 . . . 4 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝐽 ∣ ( 𝐽𝑥) ∈ 𝐽})
11494, 113syl 17 . . 3 (𝜑 → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝐽 ∣ ( 𝐽𝑥) ∈ 𝐽})
115108pweqd 4385 . . . 4 (𝜑 → 𝒫 𝐽 = 𝒫 𝐵)
116108difeq1d 3956 . . . . 5 (𝜑 → ( 𝐽𝑥) = (𝐵𝑥))
117116eleq1d 2891 . . . 4 (𝜑 → (( 𝐽𝑥) ∈ 𝐽 ↔ (𝐵𝑥) ∈ 𝐽))
118115, 117rabeqbidv 3408 . . 3 (𝜑 → {𝑥 ∈ 𝒫 𝐽 ∣ ( 𝐽𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵𝑥) ∈ 𝐽})
1195eleq2i 2898 . . . . . . 7 ((𝐵𝑥) ∈ 𝐽 ↔ (𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀})
120 difss 3966 . . . . . . . . . 10 (𝐵𝑥) ⊆ 𝐵
121 elpw2g 5051 . . . . . . . . . . 11 (𝐵𝑀 → ((𝐵𝑥) ∈ 𝒫 𝐵 ↔ (𝐵𝑥) ⊆ 𝐵))
12244, 121syl 17 . . . . . . . . . 10 (𝜑 → ((𝐵𝑥) ∈ 𝒫 𝐵 ↔ (𝐵𝑥) ⊆ 𝐵))
123120, 122mpbiri 250 . . . . . . . . 9 (𝜑 → (𝐵𝑥) ∈ 𝒫 𝐵)
124 difeq2 3951 . . . . . . . . . . 11 (𝑧 = (𝐵𝑥) → (𝐵𝑧) = (𝐵 ∖ (𝐵𝑥)))
125124eleq1d 2891 . . . . . . . . . 10 (𝑧 = (𝐵𝑥) → ((𝐵𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
126125elrab3 3587 . . . . . . . . 9 ((𝐵𝑥) ∈ 𝒫 𝐵 → ((𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
127123, 126syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
128127adantr 474 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
129119, 128syl5bb 275 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵𝑥) ∈ 𝐽 ↔ (𝐵 ∖ (𝐵𝑥)) ∈ 𝑀))
130 elpwi 4390 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
131 dfss4 4090 . . . . . . . . 9 (𝑥𝐵 ↔ (𝐵 ∖ (𝐵𝑥)) = 𝑥)
132130, 131sylib 210 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑥)) = 𝑥)
133132adantl 475 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵𝑥)) = 𝑥)
134133eleq1d 2891 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐵𝑥)) ∈ 𝑀𝑥𝑀))
135129, 134bitrd 271 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐵) → ((𝐵𝑥) ∈ 𝐽𝑥𝑀))
136135rabbidva 3401 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵𝑥𝑀})
137 incom 4034 . . . . . 6 (𝑀 ∩ 𝒫 𝐵) = (𝒫 𝐵𝑀)
138 dfin5 3806 . . . . . 6 (𝒫 𝐵𝑀) = {𝑥 ∈ 𝒫 𝐵𝑥𝑀}
139137, 138eqtri 2849 . . . . 5 (𝑀 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝒫 𝐵𝑥𝑀}
140 mresspw 16612 . . . . . . 7 (𝑀 ∈ (Moore‘𝐵) → 𝑀 ⊆ 𝒫 𝐵)
14121, 140syl 17 . . . . . 6 (𝜑𝑀 ⊆ 𝒫 𝐵)
142 df-ss 3812 . . . . . 6 (𝑀 ⊆ 𝒫 𝐵 ↔ (𝑀 ∩ 𝒫 𝐵) = 𝑀)
143141, 142sylib 210 . . . . 5 (𝜑 → (𝑀 ∩ 𝒫 𝐵) = 𝑀)
144139, 143syl5eqr 2875 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 𝐵𝑥𝑀} = 𝑀)
145136, 144eqtrd 2861 . . 3 (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵𝑥) ∈ 𝐽} = 𝑀)
146114, 118, 1453eqtrrd 2866 . 2 (𝜑𝑀 = (Clsd‘𝐽))
147111, 146jca 507 1 (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111  wal 1654   = wceq 1656  wcel 2164  wne 2999  wral 3117  {crab 3121  Vcvv 3414  cdif 3795  cun 3796  cin 3797  wss 3798  c0 4146  𝒫 cpw 4380   cuni 4660   ciun 4742   ciin 4743  cfv 6127  Moorecmre 16602  Topctop 21075  TopOnctopon 21092  Clsdccld 21198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-mre 16606  df-top 21076  df-topon 21093  df-cld 21201
This theorem is referenced by:  iscldtop  21277  istopclsd  38106
  Copyright terms: Public domain W3C validator