MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunibas Structured version   Visualization version   GIF version

Theorem filunibas 23802
Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunibas (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)

Proof of Theorem filunibas
StepHypRef Expression
1 filsspw 23772 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2 sspwuni 5050 . . 3 (𝐹 ⊆ 𝒫 𝑋 𝐹𝑋)
31, 2sylib 218 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹𝑋)
4 filtop 23776 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
5 unissel 4890 . 2 (( 𝐹𝑋𝑋𝐹) → 𝐹 = 𝑋)
63, 4, 5syl2anc 584 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4549   cuni 4858  cfv 6487  Filcfil 23766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fv 6495  df-fbas 21294  df-fil 23767
This theorem is referenced by:  filunirn  23803  filconn  23804  uffixfr  23844  uffix2  23845  uffixsn  23846  ufildr  23852  flimtopon  23891  flimss1  23894  flffval  23910  fclsval  23929  isfcls  23930  fclstopon  23933  fclsfnflim  23948  fcfval  23954
  Copyright terms: Public domain W3C validator