Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filunibas | Structured version Visualization version GIF version |
Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
filunibas | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filsspw 22910 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
2 | sspwuni 5025 | . . 3 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 ⊆ 𝑋) |
4 | filtop 22914 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
5 | unissel 4869 | . 2 ⊢ ((∪ 𝐹 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐹) → ∪ 𝐹 = 𝑋) | |
6 | 3, 4, 5 | syl2anc 583 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Filcfil 22904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-fbas 20507 df-fil 22905 |
This theorem is referenced by: filunirn 22941 filconn 22942 uffixfr 22982 uffix2 22983 uffixsn 22984 ufildr 22990 flimtopon 23029 flimss1 23032 flffval 23048 fclsval 23067 isfcls 23068 fclstopon 23071 fclsfnflim 23086 fcfval 23092 |
Copyright terms: Public domain | W3C validator |