MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunibas Structured version   Visualization version   GIF version

Theorem filunibas 23789
Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunibas (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)

Proof of Theorem filunibas
StepHypRef Expression
1 filsspw 23759 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2 sspwuni 5046 . . 3 (𝐹 ⊆ 𝒫 𝑋 𝐹𝑋)
31, 2sylib 218 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹𝑋)
4 filtop 23763 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
5 unissel 4888 . 2 (( 𝐹𝑋𝑋𝐹) → 𝐹 = 𝑋)
63, 4, 5syl2anc 584 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wss 3900  𝒫 cpw 4548   cuni 4857  cfv 6477  Filcfil 23753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-fbas 21281  df-fil 23754
This theorem is referenced by:  filunirn  23790  filconn  23791  uffixfr  23831  uffix2  23832  uffixsn  23833  ufildr  23839  flimtopon  23878  flimss1  23881  flffval  23897  fclsval  23916  isfcls  23917  fclstopon  23920  fclsfnflim  23935  fcfval  23941
  Copyright terms: Public domain W3C validator