| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filunibas | Structured version Visualization version GIF version | ||
| Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| filunibas | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filsspw 23771 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
| 2 | sspwuni 5059 | . . 3 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 ⊆ 𝑋) |
| 4 | filtop 23775 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
| 5 | unissel 4898 | . 2 ⊢ ((∪ 𝐹 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐹) → ∪ 𝐹 = 𝑋) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ‘cfv 6499 Filcfil 23765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-fbas 21293 df-fil 23766 |
| This theorem is referenced by: filunirn 23802 filconn 23803 uffixfr 23843 uffix2 23844 uffixsn 23845 ufildr 23851 flimtopon 23890 flimss1 23893 flffval 23909 fclsval 23928 isfcls 23929 fclstopon 23932 fclsfnflim 23947 fcfval 23953 |
| Copyright terms: Public domain | W3C validator |