| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filunibas | Structured version Visualization version GIF version | ||
| Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| filunibas | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filsspw 23759 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
| 2 | sspwuni 5046 | . . 3 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 ⊆ 𝑋) |
| 4 | filtop 23763 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
| 5 | unissel 4888 | . 2 ⊢ ((∪ 𝐹 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐹) → ∪ 𝐹 = 𝑋) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 𝒫 cpw 4548 ∪ cuni 4857 ‘cfv 6477 Filcfil 23753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-fbas 21281 df-fil 23754 |
| This theorem is referenced by: filunirn 23790 filconn 23791 uffixfr 23831 uffix2 23832 uffixsn 23833 ufildr 23839 flimtopon 23878 flimss1 23881 flffval 23897 fclsval 23916 isfcls 23917 fclstopon 23920 fclsfnflim 23935 fcfval 23941 |
| Copyright terms: Public domain | W3C validator |