![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filunibas | Structured version Visualization version GIF version |
Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
filunibas | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filsspw 23875 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
2 | sspwuni 5105 | . . 3 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 ⊆ 𝑋) |
4 | filtop 23879 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
5 | unissel 4943 | . 2 ⊢ ((∪ 𝐹 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐹) → ∪ 𝐹 = 𝑋) | |
6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ‘cfv 6563 Filcfil 23869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-fbas 21379 df-fil 23870 |
This theorem is referenced by: filunirn 23906 filconn 23907 uffixfr 23947 uffix2 23948 uffixsn 23949 ufildr 23955 flimtopon 23994 flimss1 23997 flffval 24013 fclsval 24032 isfcls 24033 fclstopon 24036 fclsfnflim 24051 fcfval 24057 |
Copyright terms: Public domain | W3C validator |