| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neiptopuni | Structured version Visualization version GIF version | ||
| Description: Lemma for neiptopreu 23027. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| Ref | Expression |
|---|---|
| neiptop.o | ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
| neiptop.0 | ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
| neiptop.1 | ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
| neiptop.2 | ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
| neiptop.3 | ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
| neiptop.4 | ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
| neiptop.5 | ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| Ref | Expression |
|---|---|
| neiptopuni | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4573 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | |
| 2 | 1 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → 𝑎 ⊆ 𝑋) |
| 3 | simpr 484 | . . . . . . 7 ⊢ (((𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑎) | |
| 4 | 2, 3 | sseldd 3950 | . . . . . 6 ⊢ (((𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑋) |
| 5 | neiptop.o | . . . . . . . . . 10 ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} | |
| 6 | 5 | unieqi 4886 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
| 7 | 6 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝑝 ∈ ∪ 𝐽 ↔ 𝑝 ∈ ∪ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)}) |
| 8 | elunirab 4889 | . . . . . . . 8 ⊢ (𝑝 ∈ ∪ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} ↔ ∃𝑎 ∈ 𝒫 𝑋(𝑝 ∈ 𝑎 ∧ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) | |
| 9 | 7, 8 | bitri 275 | . . . . . . 7 ⊢ (𝑝 ∈ ∪ 𝐽 ↔ ∃𝑎 ∈ 𝒫 𝑋(𝑝 ∈ 𝑎 ∧ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
| 10 | simpl 482 | . . . . . . . 8 ⊢ ((𝑝 ∈ 𝑎 ∧ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) | |
| 11 | 10 | reximi 3068 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝒫 𝑋(𝑝 ∈ 𝑎 ∧ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑎 ∈ 𝒫 𝑋𝑝 ∈ 𝑎) |
| 12 | 9, 11 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ ∪ 𝐽 → ∃𝑎 ∈ 𝒫 𝑋𝑝 ∈ 𝑎) |
| 13 | 4, 12 | r19.29a 3142 | . . . . 5 ⊢ (𝑝 ∈ ∪ 𝐽 → 𝑝 ∈ 𝑋) |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ ∪ 𝐽 → 𝑝 ∈ 𝑋)) |
| 15 | 14 | ssrdv 3955 | . . 3 ⊢ (𝜑 → ∪ 𝐽 ⊆ 𝑋) |
| 16 | ssidd 3973 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑋) | |
| 17 | neiptop.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) | |
| 18 | 17 | ralrimiva 3126 | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ 𝑋 𝑋 ∈ (𝑁‘𝑝)) |
| 19 | 5 | neipeltop 23023 | . . . 4 ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑋 𝑋 ∈ (𝑁‘𝑝))) |
| 20 | 16, 18, 19 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 21 | unissel 4905 | . . 3 ⊢ ((∪ 𝐽 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → ∪ 𝐽 = 𝑋) | |
| 22 | 15, 20, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → ∪ 𝐽 = 𝑋) |
| 23 | 22 | eqcomd 2736 | 1 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ⟶wf 6510 ‘cfv 6514 ficfi 9368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-pw 4568 df-uni 4875 |
| This theorem is referenced by: neiptoptop 23025 neiptopnei 23026 neiptopreu 23027 |
| Copyright terms: Public domain | W3C validator |