MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopuni Structured version   Visualization version   GIF version

Theorem neiptopuni 22855
Description: Lemma for neiptopreu 22858. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
neiptop.0 (πœ‘ β†’ 𝑁:π‘‹βŸΆπ’« 𝒫 𝑋)
neiptop.1 ((((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž βŠ† 𝑏 ∧ 𝑏 βŠ† 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑏 ∈ (π‘β€˜π‘))
neiptop.2 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ (fiβ€˜(π‘β€˜π‘)) βŠ† (π‘β€˜π‘))
neiptop.3 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
neiptop.4 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘ ∈ (π‘β€˜π‘)βˆ€π‘ž ∈ 𝑏 π‘Ž ∈ (π‘β€˜π‘ž))
neiptop.5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
Assertion
Ref Expression
neiptopuni (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
Distinct variable groups:   𝑝,π‘Ž   𝑁,π‘Ž   𝑋,π‘Ž   π‘Ž,𝑏,𝑝   𝐽,π‘Ž,𝑝   𝑋,𝑝   πœ‘,𝑝
Allowed substitution hints:   πœ‘(π‘ž,π‘Ž,𝑏)   𝐽(π‘ž,𝑏)   𝑁(π‘ž,𝑝,𝑏)   𝑋(π‘ž,𝑏)

Proof of Theorem neiptopuni
StepHypRef Expression
1 elpwi 4609 . . . . . . . 8 (π‘Ž ∈ 𝒫 𝑋 β†’ π‘Ž βŠ† 𝑋)
21ad2antlr 724 . . . . . . 7 (((𝑝 ∈ βˆͺ 𝐽 ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ π‘Ž βŠ† 𝑋)
3 simpr 484 . . . . . . 7 (((𝑝 ∈ βˆͺ 𝐽 ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ 𝑝 ∈ π‘Ž)
42, 3sseldd 3983 . . . . . 6 (((𝑝 ∈ βˆͺ 𝐽 ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ 𝑝 ∈ 𝑋)
5 neiptop.o . . . . . . . . . 10 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
65unieqi 4921 . . . . . . . . 9 βˆͺ 𝐽 = βˆͺ {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
76eleq2i 2824 . . . . . . . 8 (𝑝 ∈ βˆͺ 𝐽 ↔ 𝑝 ∈ βˆͺ {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)})
8 elunirab 4924 . . . . . . . 8 (𝑝 ∈ βˆͺ {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)} ↔ βˆƒπ‘Ž ∈ 𝒫 𝑋(𝑝 ∈ π‘Ž ∧ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)))
97, 8bitri 275 . . . . . . 7 (𝑝 ∈ βˆͺ 𝐽 ↔ βˆƒπ‘Ž ∈ 𝒫 𝑋(𝑝 ∈ π‘Ž ∧ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)))
10 simpl 482 . . . . . . . 8 ((𝑝 ∈ π‘Ž ∧ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
1110reximi 3083 . . . . . . 7 (βˆƒπ‘Ž ∈ 𝒫 𝑋(𝑝 ∈ π‘Ž ∧ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘Ž ∈ 𝒫 𝑋𝑝 ∈ π‘Ž)
129, 11sylbi 216 . . . . . 6 (𝑝 ∈ βˆͺ 𝐽 β†’ βˆƒπ‘Ž ∈ 𝒫 𝑋𝑝 ∈ π‘Ž)
134, 12r19.29a 3161 . . . . 5 (𝑝 ∈ βˆͺ 𝐽 β†’ 𝑝 ∈ 𝑋)
1413a1i 11 . . . 4 (πœ‘ β†’ (𝑝 ∈ βˆͺ 𝐽 β†’ 𝑝 ∈ 𝑋))
1514ssrdv 3988 . . 3 (πœ‘ β†’ βˆͺ 𝐽 βŠ† 𝑋)
16 ssidd 4005 . . . 4 (πœ‘ β†’ 𝑋 βŠ† 𝑋)
17 neiptop.5 . . . . 5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
1817ralrimiva 3145 . . . 4 (πœ‘ β†’ βˆ€π‘ ∈ 𝑋 𝑋 ∈ (π‘β€˜π‘))
195neipeltop 22854 . . . 4 (𝑋 ∈ 𝐽 ↔ (𝑋 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑋 𝑋 ∈ (π‘β€˜π‘)))
2016, 18, 19sylanbrc 582 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐽)
21 unissel 4942 . . 3 ((βˆͺ 𝐽 βŠ† 𝑋 ∧ 𝑋 ∈ 𝐽) β†’ βˆͺ 𝐽 = 𝑋)
2215, 20, 21syl2anc 583 . 2 (πœ‘ β†’ βˆͺ 𝐽 = 𝑋)
2322eqcomd 2737 1 (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  βŸΆwf 6539  β€˜cfv 6543  ficfi 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-pw 4604  df-uni 4909
This theorem is referenced by:  neiptoptop  22856  neiptopnei  22857  neiptopreu  22858
  Copyright terms: Public domain W3C validator