MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopuni Structured version   Visualization version   GIF version

Theorem neiptopuni 22027
Description: Lemma for neiptopreu 22030. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopuni (𝜑𝑋 = 𝐽)
Distinct variable groups:   𝑝,𝑎   𝑁,𝑎   𝑋,𝑎   𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝
Allowed substitution hints:   𝜑(𝑞,𝑎,𝑏)   𝐽(𝑞,𝑏)   𝑁(𝑞,𝑝,𝑏)   𝑋(𝑞,𝑏)

Proof of Theorem neiptopuni
StepHypRef Expression
1 elpwi 4522 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
21ad2antlr 727 . . . . . . 7 (((𝑝 𝐽𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑎𝑋)
3 simpr 488 . . . . . . 7 (((𝑝 𝐽𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑝𝑎)
42, 3sseldd 3902 . . . . . 6 (((𝑝 𝐽𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑝𝑋)
5 neiptop.o . . . . . . . . . 10 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
65unieqi 4832 . . . . . . . . 9 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
76eleq2i 2829 . . . . . . . 8 (𝑝 𝐽𝑝 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)})
8 elunirab 4835 . . . . . . . 8 (𝑝 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)} ↔ ∃𝑎 ∈ 𝒫 𝑋(𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
97, 8bitri 278 . . . . . . 7 (𝑝 𝐽 ↔ ∃𝑎 ∈ 𝒫 𝑋(𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
10 simpl 486 . . . . . . . 8 ((𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
1110reximi 3166 . . . . . . 7 (∃𝑎 ∈ 𝒫 𝑋(𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)) → ∃𝑎 ∈ 𝒫 𝑋𝑝𝑎)
129, 11sylbi 220 . . . . . 6 (𝑝 𝐽 → ∃𝑎 ∈ 𝒫 𝑋𝑝𝑎)
134, 12r19.29a 3208 . . . . 5 (𝑝 𝐽𝑝𝑋)
1413a1i 11 . . . 4 (𝜑 → (𝑝 𝐽𝑝𝑋))
1514ssrdv 3907 . . 3 (𝜑 𝐽𝑋)
16 ssidd 3924 . . . 4 (𝜑𝑋𝑋)
17 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
1817ralrimiva 3105 . . . 4 (𝜑 → ∀𝑝𝑋 𝑋 ∈ (𝑁𝑝))
195neipeltop 22026 . . . 4 (𝑋𝐽 ↔ (𝑋𝑋 ∧ ∀𝑝𝑋 𝑋 ∈ (𝑁𝑝)))
2016, 18, 19sylanbrc 586 . . 3 (𝜑𝑋𝐽)
21 unissel 4852 . . 3 (( 𝐽𝑋𝑋𝐽) → 𝐽 = 𝑋)
2215, 20, 21syl2anc 587 . 2 (𝜑 𝐽 = 𝑋)
2322eqcomd 2743 1 (𝜑𝑋 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  {crab 3065  wss 3866  𝒫 cpw 4513   cuni 4819  wf 6376  cfv 6380  ficfi 9026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-nul 4238  df-pw 4515  df-uni 4820
This theorem is referenced by:  neiptoptop  22028  neiptopnei  22029  neiptopreu  22030
  Copyright terms: Public domain W3C validator