MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopuni Structured version   Visualization version   GIF version

Theorem neiptopuni 23138
Description: Lemma for neiptopreu 23141. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopuni (𝜑𝑋 = 𝐽)
Distinct variable groups:   𝑝,𝑎   𝑁,𝑎   𝑋,𝑎   𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝
Allowed substitution hints:   𝜑(𝑞,𝑎,𝑏)   𝐽(𝑞,𝑏)   𝑁(𝑞,𝑝,𝑏)   𝑋(𝑞,𝑏)

Proof of Theorem neiptopuni
StepHypRef Expression
1 elpwi 4607 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
21ad2antlr 727 . . . . . . 7 (((𝑝 𝐽𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑎𝑋)
3 simpr 484 . . . . . . 7 (((𝑝 𝐽𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑝𝑎)
42, 3sseldd 3984 . . . . . 6 (((𝑝 𝐽𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑝𝑋)
5 neiptop.o . . . . . . . . . 10 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
65unieqi 4919 . . . . . . . . 9 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
76eleq2i 2833 . . . . . . . 8 (𝑝 𝐽𝑝 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)})
8 elunirab 4922 . . . . . . . 8 (𝑝 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)} ↔ ∃𝑎 ∈ 𝒫 𝑋(𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
97, 8bitri 275 . . . . . . 7 (𝑝 𝐽 ↔ ∃𝑎 ∈ 𝒫 𝑋(𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
10 simpl 482 . . . . . . . 8 ((𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
1110reximi 3084 . . . . . . 7 (∃𝑎 ∈ 𝒫 𝑋(𝑝𝑎 ∧ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)) → ∃𝑎 ∈ 𝒫 𝑋𝑝𝑎)
129, 11sylbi 217 . . . . . 6 (𝑝 𝐽 → ∃𝑎 ∈ 𝒫 𝑋𝑝𝑎)
134, 12r19.29a 3162 . . . . 5 (𝑝 𝐽𝑝𝑋)
1413a1i 11 . . . 4 (𝜑 → (𝑝 𝐽𝑝𝑋))
1514ssrdv 3989 . . 3 (𝜑 𝐽𝑋)
16 ssidd 4007 . . . 4 (𝜑𝑋𝑋)
17 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
1817ralrimiva 3146 . . . 4 (𝜑 → ∀𝑝𝑋 𝑋 ∈ (𝑁𝑝))
195neipeltop 23137 . . . 4 (𝑋𝐽 ↔ (𝑋𝑋 ∧ ∀𝑝𝑋 𝑋 ∈ (𝑁𝑝)))
2016, 18, 19sylanbrc 583 . . 3 (𝜑𝑋𝐽)
21 unissel 4938 . . 3 (( 𝐽𝑋𝑋𝐽) → 𝐽 = 𝑋)
2215, 20, 21syl2anc 584 . 2 (𝜑 𝐽 = 𝑋)
2322eqcomd 2743 1 (𝜑𝑋 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951  𝒫 cpw 4600   cuni 4907  wf 6557  cfv 6561  ficfi 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-ss 3968  df-nul 4334  df-pw 4602  df-uni 4908
This theorem is referenced by:  neiptoptop  23139  neiptopnei  23140  neiptopreu  23141
  Copyright terms: Public domain W3C validator