Step | Hyp | Ref
| Expression |
1 | | simp3 1138 |
. . . . . . 7
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
2 | | ssint 4967 |
. . . . . . 7
⊢ (𝑥 ⊆ ∩ 𝐴
↔ ∀𝑦 ∈
𝐴 𝑥 ⊆ 𝑦) |
3 | 1, 2 | sylibr 233 |
. . . . . 6
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝑥 ⊆ ∩ 𝐴) |
4 | | simp2 1137 |
. . . . . . 7
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝑥 ∈ On) |
5 | | oninton 7779 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ On) |
6 | 5 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → ∩ 𝐴 ∈ On) |
7 | | onsssuc 6451 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ ∩ 𝐴
∈ On) → (𝑥
⊆ ∩ 𝐴 ↔ 𝑥 ∈ suc ∩
𝐴)) |
8 | 4, 6, 7 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → (𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ∈ suc ∩
𝐴)) |
9 | 3, 8 | mpbid 231 |
. . . . 5
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝑥 ∈ suc ∩
𝐴) |
10 | 9 | rabssdv 4071 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ suc ∩
𝐴) |
11 | | ssrab2 4076 |
. . . . . 6
⊢ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ On |
12 | 11 | a1i 11 |
. . . . 5
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ On) |
13 | | eloni 6371 |
. . . . . 6
⊢ (∩ 𝐴
∈ On → Ord ∩ 𝐴) |
14 | 5, 13 | syl 17 |
. . . . 5
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → Ord ∩ 𝐴) |
15 | | ordunisssuc 6467 |
. . . . 5
⊢ (({𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ On ∧ Ord ∩ 𝐴)
→ (∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ ∩ 𝐴 ↔ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ suc ∩
𝐴)) |
16 | 12, 14, 15 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (∪ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ ∩ 𝐴 ↔ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ suc ∩
𝐴)) |
17 | 10, 16 | mpbird 256 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ ∩ 𝐴) |
18 | | sseq1 4006 |
. . . . 5
⊢ (𝑥 = ∩
𝐴 → (𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦)) |
19 | 18 | ralbidv 3177 |
. . . 4
⊢ (𝑥 = ∩
𝐴 → (∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦)) |
20 | | intss1 4966 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦) |
21 | 20 | rgen 3063 |
. . . . 5
⊢
∀𝑦 ∈
𝐴 ∩ 𝐴
⊆ 𝑦 |
22 | 21 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) →
∀𝑦 ∈ 𝐴 ∩
𝐴 ⊆ 𝑦) |
23 | 19, 5, 22 | elrabd 3684 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ {𝑥 ∈ On ∣
∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) |
24 | | unissel 4941 |
. . 3
⊢ ((∪ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 𝑥 ⊆ 𝑦} ⊆ ∩ 𝐴 ∧ ∩ 𝐴
∈ {𝑥 ∈ On ∣
∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} = ∩ 𝐴) |
25 | 17, 23, 24 | syl2anc 584 |
. 2
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 𝑥 ⊆ 𝑦} = ∩ 𝐴) |
26 | 25 | eqcomd 2738 |
1
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 =
∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) |