![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unicls | Structured version Visualization version GIF version |
Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
unicls.1 | ⊢ 𝐽 ∈ Top |
unicls.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
unicls | ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unicls.2 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldss2 21242 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
3 | sspwuni 4845 | . . 3 ⊢ ((Clsd‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪ (Clsd‘𝐽) ⊆ 𝑋) | |
4 | 2, 3 | mpbi 222 | . 2 ⊢ ∪ (Clsd‘𝐽) ⊆ 𝑋 |
5 | unicls.1 | . . 3 ⊢ 𝐽 ∈ Top | |
6 | 1 | topcld 21247 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ 𝑋 ∈ (Clsd‘𝐽) |
8 | unissel 4703 | . 2 ⊢ ((∪ (Clsd‘𝐽) ⊆ 𝑋 ∧ 𝑋 ∈ (Clsd‘𝐽)) → ∪ (Clsd‘𝐽) = 𝑋) | |
9 | 4, 7, 8 | mp2an 682 | 1 ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 𝒫 cpw 4379 ∪ cuni 4671 ‘cfv 6135 Topctop 21105 Clsdccld 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 df-top 21106 df-cld 21231 |
This theorem is referenced by: sxbrsigalem3 30932 sxbrsigalem4 30947 |
Copyright terms: Public domain | W3C validator |