Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unicls Structured version   Visualization version   GIF version

Theorem unicls 33900
Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
unicls.1 𝐽 ∈ Top
unicls.2 𝑋 = 𝐽
Assertion
Ref Expression
unicls (Clsd‘𝐽) = 𝑋

Proof of Theorem unicls
StepHypRef Expression
1 unicls.2 . . . 4 𝑋 = 𝐽
21cldss2 22924 . . 3 (Clsd‘𝐽) ⊆ 𝒫 𝑋
3 sspwuni 5067 . . 3 ((Clsd‘𝐽) ⊆ 𝒫 𝑋 (Clsd‘𝐽) ⊆ 𝑋)
42, 3mpbi 230 . 2 (Clsd‘𝐽) ⊆ 𝑋
5 unicls.1 . . 3 𝐽 ∈ Top
61topcld 22929 . . 3 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
75, 6ax-mp 5 . 2 𝑋 ∈ (Clsd‘𝐽)
8 unissel 4905 . 2 (( (Clsd‘𝐽) ⊆ 𝑋𝑋 ∈ (Clsd‘𝐽)) → (Clsd‘𝐽) = 𝑋)
94, 7, 8mp2an 692 1 (Clsd‘𝐽) = 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-top 22788  df-cld 22913
This theorem is referenced by:  sxbrsigalem3  34270  sxbrsigalem4  34285
  Copyright terms: Public domain W3C validator