Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unicls Structured version   Visualization version   GIF version

Theorem unicls 31839
Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
unicls.1 𝐽 ∈ Top
unicls.2 𝑋 = 𝐽
Assertion
Ref Expression
unicls (Clsd‘𝐽) = 𝑋

Proof of Theorem unicls
StepHypRef Expression
1 unicls.2 . . . 4 𝑋 = 𝐽
21cldss2 22169 . . 3 (Clsd‘𝐽) ⊆ 𝒫 𝑋
3 sspwuni 5029 . . 3 ((Clsd‘𝐽) ⊆ 𝒫 𝑋 (Clsd‘𝐽) ⊆ 𝑋)
42, 3mpbi 229 . 2 (Clsd‘𝐽) ⊆ 𝑋
5 unicls.1 . . 3 𝐽 ∈ Top
61topcld 22174 . . 3 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
75, 6ax-mp 5 . 2 𝑋 ∈ (Clsd‘𝐽)
8 unissel 4873 . 2 (( (Clsd‘𝐽) ⊆ 𝑋𝑋 ∈ (Clsd‘𝐽)) → (Clsd‘𝐽) = 𝑋)
94, 7, 8mp2an 689 1 (Clsd‘𝐽) = 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wss 3887  𝒫 cpw 4534   cuni 4840  cfv 6427  Topctop 22030  Clsdccld 22155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-iota 6385  df-fun 6429  df-fn 6430  df-fv 6435  df-top 22031  df-cld 22158
This theorem is referenced by:  sxbrsigalem3  32225  sxbrsigalem4  32240
  Copyright terms: Public domain W3C validator