| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unicls | Structured version Visualization version GIF version | ||
| Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| Ref | Expression |
|---|---|
| unicls.1 | ⊢ 𝐽 ∈ Top |
| unicls.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| unicls | ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unicls.2 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldss2 22924 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 3 | sspwuni 5067 | . . 3 ⊢ ((Clsd‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪ (Clsd‘𝐽) ⊆ 𝑋) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ ∪ (Clsd‘𝐽) ⊆ 𝑋 |
| 5 | unicls.1 | . . 3 ⊢ 𝐽 ∈ Top | |
| 6 | 1 | topcld 22929 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ 𝑋 ∈ (Clsd‘𝐽) |
| 8 | unissel 4905 | . 2 ⊢ ((∪ (Clsd‘𝐽) ⊆ 𝑋 ∧ 𝑋 ∈ (Clsd‘𝐽)) → ∪ (Clsd‘𝐽) = 𝑋) | |
| 9 | 4, 7, 8 | mp2an 692 | 1 ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-top 22788 df-cld 22913 |
| This theorem is referenced by: sxbrsigalem3 34270 sxbrsigalem4 34285 |
| Copyright terms: Public domain | W3C validator |