| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unicls | Structured version Visualization version GIF version | ||
| Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| Ref | Expression |
|---|---|
| unicls.1 | ⊢ 𝐽 ∈ Top |
| unicls.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| unicls | ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unicls.2 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldss2 22945 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 3 | sspwuni 5046 | . . 3 ⊢ ((Clsd‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪ (Clsd‘𝐽) ⊆ 𝑋) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ ∪ (Clsd‘𝐽) ⊆ 𝑋 |
| 5 | unicls.1 | . . 3 ⊢ 𝐽 ∈ Top | |
| 6 | 1 | topcld 22950 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ 𝑋 ∈ (Clsd‘𝐽) |
| 8 | unissel 4888 | . 2 ⊢ ((∪ (Clsd‘𝐽) ⊆ 𝑋 ∧ 𝑋 ∈ (Clsd‘𝐽)) → ∪ (Clsd‘𝐽) = 𝑋) | |
| 9 | 4, 7, 8 | mp2an 692 | 1 ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-top 22809 df-cld 22934 |
| This theorem is referenced by: sxbrsigalem3 34285 sxbrsigalem4 34300 |
| Copyright terms: Public domain | W3C validator |