| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unicls | Structured version Visualization version GIF version | ||
| Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| Ref | Expression |
|---|---|
| unicls.1 | ⊢ 𝐽 ∈ Top |
| unicls.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| unicls | ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unicls.2 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldss2 22968 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 3 | sspwuni 5076 | . . 3 ⊢ ((Clsd‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪ (Clsd‘𝐽) ⊆ 𝑋) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ ∪ (Clsd‘𝐽) ⊆ 𝑋 |
| 5 | unicls.1 | . . 3 ⊢ 𝐽 ∈ Top | |
| 6 | 1 | topcld 22973 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ 𝑋 ∈ (Clsd‘𝐽) |
| 8 | unissel 4914 | . 2 ⊢ ((∪ (Clsd‘𝐽) ⊆ 𝑋 ∧ 𝑋 ∈ (Clsd‘𝐽)) → ∪ (Clsd‘𝐽) = 𝑋) | |
| 9 | 4, 7, 8 | mp2an 692 | 1 ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 Clsdccld 22954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-top 22832 df-cld 22957 |
| This theorem is referenced by: sxbrsigalem3 34304 sxbrsigalem4 34319 |
| Copyright terms: Public domain | W3C validator |