Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unicls Structured version   Visualization version   GIF version

Theorem unicls 30547
Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
unicls.1 𝐽 ∈ Top
unicls.2 𝑋 = 𝐽
Assertion
Ref Expression
unicls (Clsd‘𝐽) = 𝑋

Proof of Theorem unicls
StepHypRef Expression
1 unicls.2 . . . 4 𝑋 = 𝐽
21cldss2 21242 . . 3 (Clsd‘𝐽) ⊆ 𝒫 𝑋
3 sspwuni 4845 . . 3 ((Clsd‘𝐽) ⊆ 𝒫 𝑋 (Clsd‘𝐽) ⊆ 𝑋)
42, 3mpbi 222 . 2 (Clsd‘𝐽) ⊆ 𝑋
5 unicls.1 . . 3 𝐽 ∈ Top
61topcld 21247 . . 3 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
75, 6ax-mp 5 . 2 𝑋 ∈ (Clsd‘𝐽)
8 unissel 4703 . 2 (( (Clsd‘𝐽) ⊆ 𝑋𝑋 ∈ (Clsd‘𝐽)) → (Clsd‘𝐽) = 𝑋)
94, 7, 8mp2an 682 1 (Clsd‘𝐽) = 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2107  wss 3792  𝒫 cpw 4379   cuni 4671  cfv 6135  Topctop 21105  Clsdccld 21228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fn 6138  df-fv 6143  df-top 21106  df-cld 21231
This theorem is referenced by:  sxbrsigalem3  30932  sxbrsigalem4  30947
  Copyright terms: Public domain W3C validator