Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unicls | Structured version Visualization version GIF version |
Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
unicls.1 | ⊢ 𝐽 ∈ Top |
unicls.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
unicls | ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unicls.2 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldss2 22169 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
3 | sspwuni 5029 | . . 3 ⊢ ((Clsd‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪ (Clsd‘𝐽) ⊆ 𝑋) | |
4 | 2, 3 | mpbi 229 | . 2 ⊢ ∪ (Clsd‘𝐽) ⊆ 𝑋 |
5 | unicls.1 | . . 3 ⊢ 𝐽 ∈ Top | |
6 | 1 | topcld 22174 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ 𝑋 ∈ (Clsd‘𝐽) |
8 | unissel 4873 | . 2 ⊢ ((∪ (Clsd‘𝐽) ⊆ 𝑋 ∧ 𝑋 ∈ (Clsd‘𝐽)) → ∪ (Clsd‘𝐽) = 𝑋) | |
9 | 4, 7, 8 | mp2an 689 | 1 ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4534 ∪ cuni 4840 ‘cfv 6427 Topctop 22030 Clsdccld 22155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-iota 6385 df-fun 6429 df-fn 6430 df-fv 6435 df-top 22031 df-cld 22158 |
This theorem is referenced by: sxbrsigalem3 32225 sxbrsigalem4 32240 |
Copyright terms: Public domain | W3C validator |