Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsguni Structured version   Visualization version   GIF version

Theorem carsguni 31742
 Description: The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
carsguni (𝜑 (toCaraSiga‘𝑀) = 𝑂)

Proof of Theorem carsguni
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
2 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgcl 31738 . . . . . 6 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
43sselda 3917 . . . . 5 ((𝜑𝑎 ∈ (toCaraSiga‘𝑀)) → 𝑎 ∈ 𝒫 𝑂)
54elpwid 4511 . . . 4 ((𝜑𝑎 ∈ (toCaraSiga‘𝑀)) → 𝑎𝑂)
65ralrimiva 3149 . . 3 (𝜑 → ∀𝑎 ∈ (toCaraSiga‘𝑀)𝑎𝑂)
7 unissb 4836 . . 3 ( (toCaraSiga‘𝑀) ⊆ 𝑂 ↔ ∀𝑎 ∈ (toCaraSiga‘𝑀)𝑎𝑂)
86, 7sylibr 237 . 2 (𝜑 (toCaraSiga‘𝑀) ⊆ 𝑂)
9 baselcarsg.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
101, 2, 9baselcarsg 31740 . 2 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
11 unissel 4835 . 2 (( (toCaraSiga‘𝑀) ⊆ 𝑂𝑂 ∈ (toCaraSiga‘𝑀)) → (toCaraSiga‘𝑀) = 𝑂)
128, 10, 11syl2anc 587 1 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3883  ∅c0 4246  𝒫 cpw 4500  ∪ cuni 4804  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  0cc0 10544  +∞cpnf 10679  [,]cicc 12749  toCaraSigaccarsg 31735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7684  df-2nd 7685  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-xadd 12516  df-icc 12753  df-carsg 31736 This theorem is referenced by:  carsgclctun  31755
 Copyright terms: Public domain W3C validator