Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsguni Structured version   Visualization version   GIF version

Theorem carsguni 34273
Description: The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
carsguni (𝜑 (toCaraSiga‘𝑀) = 𝑂)

Proof of Theorem carsguni
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
2 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgcl 34269 . . . . . 6 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
43sselda 4008 . . . . 5 ((𝜑𝑎 ∈ (toCaraSiga‘𝑀)) → 𝑎 ∈ 𝒫 𝑂)
54elpwid 4631 . . . 4 ((𝜑𝑎 ∈ (toCaraSiga‘𝑀)) → 𝑎𝑂)
65ralrimiva 3152 . . 3 (𝜑 → ∀𝑎 ∈ (toCaraSiga‘𝑀)𝑎𝑂)
7 unissb 4963 . . 3 ( (toCaraSiga‘𝑀) ⊆ 𝑂 ↔ ∀𝑎 ∈ (toCaraSiga‘𝑀)𝑎𝑂)
86, 7sylibr 234 . 2 (𝜑 (toCaraSiga‘𝑀) ⊆ 𝑂)
9 baselcarsg.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
101, 2, 9baselcarsg 34271 . 2 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
11 unissel 4962 . 2 (( (toCaraSiga‘𝑀) ⊆ 𝑂𝑂 ∈ (toCaraSiga‘𝑀)) → (toCaraSiga‘𝑀) = 𝑂)
128, 10, 11syl2anc 583 1 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,]cicc 13410  toCaraSigaccarsg 34266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-xadd 13176  df-icc 13414  df-carsg 34267
This theorem is referenced by:  carsgclctun  34286
  Copyright terms: Public domain W3C validator