| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisucs | Structured version Visualization version GIF version | ||
| Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6462. (Revised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| unisucs | ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6389 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | unieqi 4918 | . . 3 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴})) |
| 4 | uniun 4929 | . . 3 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴})) |
| 6 | unisng 4924 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
| 7 | 6 | uneq2d 4167 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
| 8 | 3, 5, 7 | 3eqtrd 2780 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 {csn 4625 ∪ cuni 4906 suc csuc 6385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-ss 3967 df-sn 4626 df-pr 4628 df-uni 4907 df-suc 6389 |
| This theorem is referenced by: unisucg 6461 |
| Copyright terms: Public domain | W3C validator |