| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisucs | Structured version Visualization version GIF version | ||
| Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6413. (Revised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| unisucs | ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6338 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | unieqi 4883 | . . 3 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴})) |
| 4 | uniun 4894 | . . 3 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴})) |
| 6 | unisng 4889 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
| 7 | 6 | uneq2d 4131 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
| 8 | 3, 5, 7 | 3eqtrd 2768 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {csn 4589 ∪ cuni 4871 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 df-suc 6338 |
| This theorem is referenced by: unisucg 6412 |
| Copyright terms: Public domain | W3C validator |