MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisucs Structured version   Visualization version   GIF version

Theorem unisucs 6419
Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6421. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
unisucs (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))

Proof of Theorem unisucs
StepHypRef Expression
1 df-suc 6346 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21unieqi 4891 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
32a1i 11 . 2 (𝐴𝑉 suc 𝐴 = (𝐴 ∪ {𝐴}))
4 uniun 4902 . . 3 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
54a1i 11 . 2 (𝐴𝑉 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴}))
6 unisng 4897 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
76uneq2d 4139 . 2 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
83, 5, 73eqtrd 2769 1 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3920  {csn 4597   cuni 4879  suc csuc 6342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-un 3927  df-ss 3939  df-sn 4598  df-pr 4600  df-uni 4880  df-suc 6346
This theorem is referenced by:  unisucg  6420
  Copyright terms: Public domain W3C validator