MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisucs Structured version   Visualization version   GIF version

Theorem unisucs 6364
Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6366. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
unisucs (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))

Proof of Theorem unisucs
StepHypRef Expression
1 df-suc 6294 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21unieqi 4863 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
32a1i 11 . 2 (𝐴𝑉 suc 𝐴 = (𝐴 ∪ {𝐴}))
4 uniun 4876 . . 3 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
54a1i 11 . 2 (𝐴𝑉 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴}))
6 unisng 4871 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
76uneq2d 4108 . 2 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
83, 5, 73eqtrd 2781 1 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cun 3895  {csn 4571   cuni 4850  suc csuc 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3443  df-un 3902  df-in 3904  df-ss 3914  df-sn 4572  df-pr 4574  df-uni 4851  df-suc 6294
This theorem is referenced by:  unisucg  6365
  Copyright terms: Public domain W3C validator