| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisucs | Structured version Visualization version GIF version | ||
| Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6387. (Revised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| unisucs | ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6312 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | unieqi 4871 | . . 3 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴})) |
| 4 | uniun 4882 | . . 3 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴})) |
| 6 | unisng 4877 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
| 7 | 6 | uneq2d 4118 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
| 8 | 3, 5, 7 | 3eqtrd 2770 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 {csn 4576 ∪ cuni 4859 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 df-uni 4860 df-suc 6312 |
| This theorem is referenced by: unisucg 6386 |
| Copyright terms: Public domain | W3C validator |