Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisucs | Structured version Visualization version GIF version |
Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6366. (Revised by BJ, 28-Dec-2024.) |
Ref | Expression |
---|---|
unisucs | ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6294 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | unieqi 4863 | . . 3 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴})) |
4 | uniun 4876 | . . 3 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴})) |
6 | unisng 4871 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
7 | 6 | uneq2d 4108 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
8 | 3, 5, 7 | 3eqtrd 2781 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cun 3895 {csn 4571 ∪ cuni 4850 suc csuc 6290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-un 3902 df-in 3904 df-ss 3914 df-sn 4572 df-pr 4574 df-uni 4851 df-suc 6294 |
This theorem is referenced by: unisucg 6365 |
Copyright terms: Public domain | W3C validator |