Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisucs | Structured version Visualization version GIF version |
Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6359. (Revised by BJ, 28-Dec-2024.) |
Ref | Expression |
---|---|
unisucs | ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6287 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | unieqi 4857 | . . 3 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴})) |
4 | uniun 4870 | . . 3 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴})) |
6 | unisng 4865 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
7 | 6 | uneq2d 4103 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
8 | 3, 5, 7 | 3eqtrd 2780 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∪ cun 3890 {csn 4565 ∪ cuni 4844 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 df-uni 4845 df-suc 6287 |
This theorem is referenced by: unisucg 6358 |
Copyright terms: Public domain | W3C validator |