MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisucs Structured version   Visualization version   GIF version

Theorem unisucs 6442
Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6444. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
unisucs (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))

Proof of Theorem unisucs
StepHypRef Expression
1 df-suc 6371 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21unieqi 4922 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
32a1i 11 . 2 (𝐴𝑉 suc 𝐴 = (𝐴 ∪ {𝐴}))
4 uniun 4935 . . 3 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
54a1i 11 . 2 (𝐴𝑉 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴}))
6 unisng 4930 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
76uneq2d 4164 . 2 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
83, 5, 73eqtrd 2777 1 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cun 3947  {csn 4629   cuni 4909  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632  df-uni 4910  df-suc 6371
This theorem is referenced by:  unisucg  6443
  Copyright terms: Public domain W3C validator