Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onunisuc | Structured version Visualization version GIF version |
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6399. (Revised by BJ, 28-Dec-2024.) |
Ref | Expression |
---|---|
onunisuc | ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontr 6388 | . 2 ⊢ (𝐴 ∈ On → Tr 𝐴) | |
2 | unisucg 6358 | . 2 ⊢ (𝐴 ∈ On → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbid 231 | 1 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∪ cuni 4844 Tr wtr 5198 Oncon0 6281 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 df-uni 4845 df-tr 5199 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 df-suc 6287 |
This theorem is referenced by: onunisuci 6399 nlimsuc 41270 |
Copyright terms: Public domain | W3C validator |