MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunisuc Structured version   Visualization version   GIF version

Theorem onunisuc 6469
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6479. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
onunisuc (𝐴 ∈ On → suc 𝐴 = 𝐴)

Proof of Theorem onunisuc
StepHypRef Expression
1 ontr 6468 . 2 (𝐴 ∈ On → Tr 𝐴)
2 unisucg 6437 . 2 (𝐴 ∈ On → (Tr 𝐴 suc 𝐴 = 𝐴))
31, 2mpbid 232 1 (𝐴 ∈ On → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4888  Tr wtr 5234  Oncon0 6357  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-v 3466  df-un 3936  df-ss 3948  df-sn 4607  df-pr 4609  df-uni 4889  df-tr 5235  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by:  onunisuci  6479  nlimsuc  43432
  Copyright terms: Public domain W3C validator