Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onunisuc | Structured version Visualization version GIF version |
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6406. (Revised by BJ, 28-Dec-2024.) |
Ref | Expression |
---|---|
onunisuc | ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontr 6395 | . 2 ⊢ (𝐴 ∈ On → Tr 𝐴) | |
2 | unisucg 6365 | . 2 ⊢ (𝐴 ∈ On → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbid 231 | 1 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cuni 4849 Tr wtr 5203 Oncon0 6288 suc csuc 6290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3442 df-un 3901 df-in 3903 df-ss 3913 df-sn 4571 df-pr 4573 df-uni 4850 df-tr 5204 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-ord 6291 df-on 6292 df-suc 6294 |
This theorem is referenced by: onunisuci 6406 nlimsuc 41287 |
Copyright terms: Public domain | W3C validator |