MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunisuc Structured version   Visualization version   GIF version

Theorem onunisuc 6505
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6515. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
onunisuc (𝐴 ∈ On → suc 𝐴 = 𝐴)

Proof of Theorem onunisuc
StepHypRef Expression
1 ontr 6504 . 2 (𝐴 ∈ On → Tr 𝐴)
2 unisucg 6473 . 2 (𝐴 ∈ On → (Tr 𝐴 suc 𝐴 = 𝐴))
31, 2mpbid 232 1 (𝐴 ∈ On → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   cuni 4931  Tr wtr 5283  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  onunisuci  6515  nlimsuc  43403
  Copyright terms: Public domain W3C validator