| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onunisuc | Structured version Visualization version GIF version | ||
| Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6427. (Revised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| onunisuc | ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontr 6417 | . 2 ⊢ (𝐴 ∈ On → Tr 𝐴) | |
| 2 | unisucg 6386 | . 2 ⊢ (𝐴 ∈ On → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 Tr wtr 5196 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: onunisuci 6427 nlimsuc 43482 |
| Copyright terms: Public domain | W3C validator |