| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onunisuc | Structured version Visualization version GIF version | ||
| Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) Generalize from onunisuci 6479. (Revised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| onunisuc | ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontr 6468 | . 2 ⊢ (𝐴 ∈ On → Tr 𝐴) | |
| 2 | unisucg 6437 | . 2 ⊢ (𝐴 ∈ On → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4888 Tr wtr 5234 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: onunisuci 6479 nlimsuc 43432 |
| Copyright terms: Public domain | W3C validator |