| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4870 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 4569 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1930 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
| 5 | vsnid 4623 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 6 | snelpwi 5398 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 7 | elunii 4872 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 9 | eqriv 2726 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 |
| This theorem is referenced by: univ 5406 pwtr 5407 unixpss 5764 pwexr 7721 unifpw 9282 fiuni 9355 ween 9964 fin23lem41 10281 mremre 17541 submre 17542 isacs1i 17594 eltg4i 22823 distop 22858 distopon 22860 distps 22878 ntrss2 22920 isopn3 22929 discld 22952 mretopd 22955 dishaus 23245 discmp 23261 dissnlocfin 23392 locfindis 23393 txdis 23495 xkopt 23518 xkofvcn 23547 hmphdis 23659 ustbas2 24089 vitali 25490 shsupcl 31240 shsupunss 31248 iundifdifd 32463 iundifdif 32464 dispcmp 33822 mbfmcnt 34232 omssubadd 34264 carsgval 34267 carsggect 34282 coinflipprob 34444 coinflipuniv 34446 fnemeet2 36328 bj-unirel 37012 bj-discrmoore 37072 icoreunrn 37320 ctbssinf 37367 mapdunirnN 41617 ismrcd1 42659 hbt 43092 pwelg 43522 pwsal 46286 salgenval 46292 salgenn0 46302 salexct 46305 salgencntex 46314 0ome 46500 isomennd 46502 unidmovn 46584 rrnmbl 46585 hspmbl 46600 |
| Copyright terms: Public domain | W3C validator |