| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4861 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 4561 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1930 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
| 5 | vsnid 4615 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 6 | snelpwi 5386 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 7 | elunii 4863 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 9 | eqriv 2726 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 𝒫 cpw 4551 {csn 4577 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 |
| This theorem is referenced by: univ 5394 pwtr 5395 unixpss 5753 pwexr 7701 unifpw 9245 fiuni 9318 ween 9929 fin23lem41 10246 mremre 17506 submre 17507 isacs1i 17563 eltg4i 22845 distop 22880 distopon 22882 distps 22900 ntrss2 22942 isopn3 22951 discld 22974 mretopd 22977 dishaus 23267 discmp 23283 dissnlocfin 23414 locfindis 23415 txdis 23517 xkopt 23540 xkofvcn 23569 hmphdis 23681 ustbas2 24111 vitali 25512 shsupcl 31282 shsupunss 31290 iundifdifd 32505 iundifdif 32506 dispcmp 33826 mbfmcnt 34236 omssubadd 34268 carsgval 34271 carsggect 34286 coinflipprob 34448 coinflipuniv 34450 fnemeet2 36341 bj-unirel 37025 bj-discrmoore 37085 icoreunrn 37333 ctbssinf 37380 mapdunirnN 41629 ismrcd1 42671 hbt 43103 pwelg 43533 pwsal 46296 salgenval 46302 salgenn0 46312 salexct 46315 salgencntex 46324 0ome 46510 isomennd 46512 unidmovn 46594 rrnmbl 46595 hspmbl 46610 |
| Copyright terms: Public domain | W3C validator |