MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipw Structured version   Visualization version   GIF version

Theorem unipw 5410
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4874 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 4573 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1930 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 217 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vsnid 4627 . . . 4 𝑥 ∈ {𝑥}
6 snelpwi 5403 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
7 elunii 4876 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
85, 6, 7sylancr 587 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
94, 8impbii 209 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
109eqriv 2726 1 𝒫 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  𝒫 cpw 4563  {csn 4589   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-pw 4565  df-sn 4590  df-pr 4592  df-uni 4872
This theorem is referenced by:  univ  5411  pwtr  5412  unixpss  5773  pwexr  7741  unifpw  9306  fiuni  9379  ween  9988  fin23lem41  10305  mremre  17565  submre  17566  isacs1i  17618  eltg4i  22847  distop  22882  distopon  22884  distps  22902  ntrss2  22944  isopn3  22953  discld  22976  mretopd  22979  dishaus  23269  discmp  23285  dissnlocfin  23416  locfindis  23417  txdis  23519  xkopt  23542  xkofvcn  23571  hmphdis  23683  ustbas2  24113  vitali  25514  shsupcl  31267  shsupunss  31275  iundifdifd  32490  iundifdif  32491  dispcmp  33849  mbfmcnt  34259  omssubadd  34291  carsgval  34294  carsggect  34309  coinflipprob  34471  coinflipuniv  34473  fnemeet2  36355  bj-unirel  37039  bj-discrmoore  37099  icoreunrn  37347  ctbssinf  37394  mapdunirnN  41644  ismrcd1  42686  hbt  43119  pwelg  43549  pwsal  46313  salgenval  46319  salgenn0  46329  salexct  46332  salgencntex  46341  0ome  46527  isomennd  46529  unidmovn  46611  rrnmbl  46612  hspmbl  46627
  Copyright terms: Public domain W3C validator