| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4859 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 4557 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1931 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
| 5 | vsnid 4613 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 6 | snelpwi 5383 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 7 | elunii 4861 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 9 | eqriv 2728 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 𝒫 cpw 4547 {csn 4573 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: univ 5390 pwtr 5391 unixpss 5749 pwexr 7698 unifpw 9239 fiuni 9312 ween 9926 fin23lem41 10243 mremre 17506 submre 17507 isacs1i 17563 eltg4i 22875 distop 22910 distopon 22912 distps 22930 ntrss2 22972 isopn3 22981 discld 23004 mretopd 23007 dishaus 23297 discmp 23313 dissnlocfin 23444 locfindis 23445 txdis 23547 xkopt 23570 xkofvcn 23599 hmphdis 23711 ustbas2 24140 vitali 25541 shsupcl 31318 shsupunss 31326 iundifdifd 32541 iundifdif 32542 dispcmp 33872 mbfmcnt 34281 omssubadd 34313 carsgval 34316 carsggect 34331 coinflipprob 34493 coinflipuniv 34495 fnemeet2 36409 bj-unirel 37093 bj-discrmoore 37153 icoreunrn 37401 ctbssinf 37448 mapdunirnN 41697 ismrcd1 42739 hbt 43171 pwelg 43601 pwsal 46361 salgenval 46367 salgenn0 46377 salexct 46380 salgencntex 46389 0ome 46575 isomennd 46577 unidmovn 46659 rrnmbl 46660 hspmbl 46675 |
| Copyright terms: Public domain | W3C validator |