| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4891 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 4590 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1930 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
| 5 | vsnid 4644 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 6 | snelpwi 5423 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 7 | elunii 4893 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 9 | eqriv 2733 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 𝒫 cpw 4580 {csn 4606 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4889 |
| This theorem is referenced by: univ 5431 pwtr 5432 unixpss 5794 pwexr 7764 unifpw 9372 fiuni 9445 ween 10054 fin23lem41 10371 mremre 17621 submre 17622 isacs1i 17674 eltg4i 22903 distop 22938 distopon 22940 distps 22958 ntrss2 23000 isopn3 23009 discld 23032 mretopd 23035 dishaus 23325 discmp 23341 dissnlocfin 23472 locfindis 23473 txdis 23575 xkopt 23598 xkofvcn 23627 hmphdis 23739 ustbas2 24169 vitali 25571 shsupcl 31324 shsupunss 31332 iundifdifd 32547 iundifdif 32548 dispcmp 33895 mbfmcnt 34305 omssubadd 34337 carsgval 34340 carsggect 34355 coinflipprob 34517 coinflipuniv 34519 fnemeet2 36390 bj-unirel 37074 bj-discrmoore 37134 icoreunrn 37382 ctbssinf 37429 mapdunirnN 41674 ismrcd1 42688 hbt 43121 pwelg 43551 pwsal 46311 salgenval 46317 salgenn0 46327 salexct 46330 salgencntex 46339 0ome 46525 isomennd 46527 unidmovn 46609 rrnmbl 46610 hspmbl 46625 |
| Copyright terms: Public domain | W3C validator |