| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4890 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 4590 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1929 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
| 5 | vsnid 4643 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 6 | snelpwi 5428 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 7 | elunii 4892 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 9 | eqriv 2731 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 𝒫 cpw 4580 {csn 4606 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4888 |
| This theorem is referenced by: univ 5436 pwtr 5437 unixpss 5800 pwexr 7767 unifpw 9377 fiuni 9450 ween 10057 fin23lem41 10374 mremre 17619 submre 17620 isacs1i 17672 eltg4i 22915 distop 22950 distopon 22952 distps 22970 ntrss2 23012 isopn3 23021 discld 23044 mretopd 23047 dishaus 23337 discmp 23353 dissnlocfin 23484 locfindis 23485 txdis 23587 xkopt 23610 xkofvcn 23639 hmphdis 23751 ustbas2 24181 vitali 25585 shsupcl 31286 shsupunss 31294 iundifdifd 32510 iundifdif 32511 dispcmp 33833 mbfmcnt 34245 omssubadd 34277 carsgval 34280 carsggect 34295 coinflipprob 34457 coinflipuniv 34459 fnemeet2 36343 bj-unirel 37027 bj-discrmoore 37087 icoreunrn 37335 ctbssinf 37382 mapdunirnN 41627 ismrcd1 42687 hbt 43120 pwelg 43550 pwsal 46302 salgenval 46308 salgenn0 46318 salexct 46321 salgencntex 46330 0ome 46516 isomennd 46518 unidmovn 46600 rrnmbl 46601 hspmbl 46616 |
| Copyright terms: Public domain | W3C validator |