Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4842 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
2 | elelpwi 4545 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
3 | 2 | exlimiv 1933 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
5 | vsnid 4598 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
6 | snelpwi 5360 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
7 | elunii 4844 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 4, 8 | impbii 208 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 9 | eqriv 2735 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: univ 5367 pwtr 5368 unixpss 5720 pwexr 7615 unifpw 9122 fiuni 9187 ween 9791 fin23lem41 10108 mremre 17313 submre 17314 isacs1i 17366 eltg4i 22110 distop 22145 distopon 22147 distps 22166 ntrss2 22208 isopn3 22217 discld 22240 mretopd 22243 dishaus 22533 discmp 22549 dissnlocfin 22680 locfindis 22681 txdis 22783 xkopt 22806 xkofvcn 22835 hmphdis 22947 ustbas2 23377 vitali 24777 shsupcl 29700 shsupunss 29708 iundifdifd 30901 iundifdif 30902 dispcmp 31809 mbfmcnt 32235 omssubadd 32267 carsgval 32270 carsggect 32285 coinflipprob 32446 coinflipuniv 32448 fnemeet2 34556 bj-unirel 35224 bj-discrmoore 35282 icoreunrn 35530 ctbssinf 35577 mapdunirnN 39664 ismrcd1 40520 hbt 40955 pwelg 41167 pwsal 43856 salgenval 43862 salgenn0 43870 salexct 43873 salgencntex 43882 0ome 44067 isomennd 44069 unidmovn 44151 rrnmbl 44152 hspmbl 44167 |
Copyright terms: Public domain | W3C validator |