![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4911 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
2 | elelpwi 4612 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
3 | 2 | exlimiv 1932 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
5 | vsnid 4665 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
6 | snelpwi 5443 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
7 | elunii 4913 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
8 | 5, 6, 7 | sylancr 586 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 4, 8 | impbii 208 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 9 | eqriv 2728 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 𝒫 cpw 4602 {csn 4628 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 df-pw 4604 df-sn 4629 df-pr 4631 df-uni 4909 |
This theorem is referenced by: univ 5451 pwtr 5452 unixpss 5810 pwexr 7756 unifpw 9359 fiuni 9427 ween 10034 fin23lem41 10351 mremre 17553 submre 17554 isacs1i 17606 eltg4i 22684 distop 22719 distopon 22721 distps 22740 ntrss2 22782 isopn3 22791 discld 22814 mretopd 22817 dishaus 23107 discmp 23123 dissnlocfin 23254 locfindis 23255 txdis 23357 xkopt 23380 xkofvcn 23409 hmphdis 23521 ustbas2 23951 vitali 25363 shsupcl 30859 shsupunss 30867 iundifdifd 32061 iundifdif 32062 dispcmp 33138 mbfmcnt 33566 omssubadd 33598 carsgval 33601 carsggect 33616 coinflipprob 33777 coinflipuniv 33779 fnemeet2 35556 bj-unirel 36236 bj-discrmoore 36296 icoreunrn 36544 ctbssinf 36591 mapdunirnN 40825 ismrcd1 41739 hbt 42175 pwelg 42614 pwsal 45330 salgenval 45336 salgenn0 45346 salexct 45349 salgencntex 45358 0ome 45544 isomennd 45546 unidmovn 45628 rrnmbl 45629 hspmbl 45644 |
Copyright terms: Public domain | W3C validator |