| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4874 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 4573 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1930 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
| 5 | vsnid 4627 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 6 | snelpwi 5403 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 7 | elunii 4876 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 9 | eqriv 2726 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: univ 5411 pwtr 5412 unixpss 5773 pwexr 7741 unifpw 9306 fiuni 9379 ween 9988 fin23lem41 10305 mremre 17565 submre 17566 isacs1i 17618 eltg4i 22847 distop 22882 distopon 22884 distps 22902 ntrss2 22944 isopn3 22953 discld 22976 mretopd 22979 dishaus 23269 discmp 23285 dissnlocfin 23416 locfindis 23417 txdis 23519 xkopt 23542 xkofvcn 23571 hmphdis 23683 ustbas2 24113 vitali 25514 shsupcl 31267 shsupunss 31275 iundifdifd 32490 iundifdif 32491 dispcmp 33849 mbfmcnt 34259 omssubadd 34291 carsgval 34294 carsggect 34309 coinflipprob 34471 coinflipuniv 34473 fnemeet2 36355 bj-unirel 37039 bj-discrmoore 37099 icoreunrn 37347 ctbssinf 37394 mapdunirnN 41644 ismrcd1 42686 hbt 43119 pwelg 43549 pwsal 46313 salgenval 46319 salgenn0 46329 salexct 46332 salgencntex 46341 0ome 46527 isomennd 46529 unidmovn 46611 rrnmbl 46612 hspmbl 46627 |
| Copyright terms: Public domain | W3C validator |