MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipw Structured version   Visualization version   GIF version

Theorem unipw 5451
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4912 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 4613 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1934 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 216 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vsnid 4666 . . . 4 𝑥 ∈ {𝑥}
6 snelpwi 5444 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
7 elunii 4914 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
85, 6, 7sylancr 588 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
94, 8impbii 208 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
109eqriv 2730 1 𝒫 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wex 1782  wcel 2107  𝒫 cpw 4603  {csn 4629   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4910
This theorem is referenced by:  univ  5452  pwtr  5453  unixpss  5811  pwexr  7752  unifpw  9355  fiuni  9423  ween  10030  fin23lem41  10347  mremre  17548  submre  17549  isacs1i  17601  eltg4i  22463  distop  22498  distopon  22500  distps  22519  ntrss2  22561  isopn3  22570  discld  22593  mretopd  22596  dishaus  22886  discmp  22902  dissnlocfin  23033  locfindis  23034  txdis  23136  xkopt  23159  xkofvcn  23188  hmphdis  23300  ustbas2  23730  vitali  25130  shsupcl  30591  shsupunss  30599  iundifdifd  31793  iundifdif  31794  dispcmp  32839  mbfmcnt  33267  omssubadd  33299  carsgval  33302  carsggect  33317  coinflipprob  33478  coinflipuniv  33480  fnemeet2  35252  bj-unirel  35932  bj-discrmoore  35992  icoreunrn  36240  ctbssinf  36287  mapdunirnN  40521  ismrcd1  41436  hbt  41872  pwelg  42311  pwsal  45031  salgenval  45037  salgenn0  45047  salexct  45050  salgencntex  45059  0ome  45245  isomennd  45247  unidmovn  45329  rrnmbl  45330  hspmbl  45345
  Copyright terms: Public domain W3C validator