![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4934 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
2 | elelpwi 4632 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
3 | 2 | exlimiv 1929 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
5 | vsnid 4685 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
6 | snelpwi 5463 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
7 | elunii 4936 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
8 | 5, 6, 7 | sylancr 586 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 4, 8 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 9 | eqriv 2737 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: univ 5471 pwtr 5472 unixpss 5834 pwexr 7800 unifpw 9425 fiuni 9497 ween 10104 fin23lem41 10421 mremre 17662 submre 17663 isacs1i 17715 eltg4i 22988 distop 23023 distopon 23025 distps 23044 ntrss2 23086 isopn3 23095 discld 23118 mretopd 23121 dishaus 23411 discmp 23427 dissnlocfin 23558 locfindis 23559 txdis 23661 xkopt 23684 xkofvcn 23713 hmphdis 23825 ustbas2 24255 vitali 25667 shsupcl 31370 shsupunss 31378 iundifdifd 32584 iundifdif 32585 dispcmp 33805 mbfmcnt 34233 omssubadd 34265 carsgval 34268 carsggect 34283 coinflipprob 34444 coinflipuniv 34446 fnemeet2 36333 bj-unirel 37017 bj-discrmoore 37077 icoreunrn 37325 ctbssinf 37372 mapdunirnN 41607 ismrcd1 42654 hbt 43087 pwelg 43522 pwsal 46236 salgenval 46242 salgenn0 46252 salexct 46255 salgencntex 46264 0ome 46450 isomennd 46452 unidmovn 46534 rrnmbl 46535 hspmbl 46550 |
Copyright terms: Public domain | W3C validator |