Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4839 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
2 | elelpwi 4542 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
3 | 2 | exlimiv 1934 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
5 | vsnid 4595 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
6 | snelpwi 5354 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
7 | elunii 4841 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
8 | 5, 6, 7 | sylancr 586 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 4, 8 | impbii 208 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 9 | eqriv 2735 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: univ 5361 pwtr 5362 unixpss 5709 pwexr 7593 unifpw 9052 fiuni 9117 ween 9722 fin23lem41 10039 mremre 17230 submre 17231 isacs1i 17283 eltg4i 22018 distop 22053 distopon 22055 distps 22074 ntrss2 22116 isopn3 22125 discld 22148 mretopd 22151 dishaus 22441 discmp 22457 dissnlocfin 22588 locfindis 22589 txdis 22691 xkopt 22714 xkofvcn 22743 hmphdis 22855 ustbas2 23285 vitali 24682 shsupcl 29601 shsupunss 29609 iundifdifd 30802 iundifdif 30803 dispcmp 31711 mbfmcnt 32135 omssubadd 32167 carsgval 32170 carsggect 32185 coinflipprob 32346 coinflipuniv 32348 fnemeet2 34483 bj-unirel 35151 bj-discrmoore 35209 icoreunrn 35457 ctbssinf 35504 mapdunirnN 39591 ismrcd1 40436 hbt 40871 pwelg 41056 pwsal 43746 salgenval 43752 salgenn0 43760 salexct 43763 salgencntex 43772 0ome 43957 isomennd 43959 unidmovn 44041 rrnmbl 44042 hspmbl 44057 |
Copyright terms: Public domain | W3C validator |