Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > untelirr | Structured version Visualization version GIF version |
Description: We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 33762). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
Ref | Expression |
---|---|
untelirr | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2828 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
2 | eleq2 2829 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
3 | 1, 2 | bitrd 278 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
4 | 3 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐴 ∈ 𝐴)) |
5 | 4 | rspccv 3558 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴)) |
6 | 5 | pm2.01d 189 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2110 ∀wral 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 |
This theorem is referenced by: untsucf 33645 untangtr 33649 dfon2lem3 33755 dfon2lem7 33759 dfon2lem8 33760 dfon2lem9 33761 |
Copyright terms: Public domain | W3C validator |