Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem9 Structured version   Visualization version   GIF version

Theorem dfon2lem9 33031
Description: Lemma for dfon2 33032. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.)
Assertion
Ref Expression
dfon2lem9 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem dfon2lem9
Dummy variables 𝑧 𝑤 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4032 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)))
2 dfon2lem8 33030 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) ∧ 𝑧𝑧))
32simprd 498 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → 𝑧𝑧)
4 intss1 4883 . . . . . . . . 9 (𝑡𝑧 𝑧𝑡)
52simpld 497 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧))
6 intex 5232 . . . . . . . . . . 11 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
7 dfon2lem3 33025 . . . . . . . . . . . . . . . . 17 ( 𝑧 ∈ V → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥)))
87imp 409 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥))
98simprd 498 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ∀𝑥 𝑧 ¬ 𝑥𝑥)
10 untelirr 32929 . . . . . . . . . . . . . . 15 (∀𝑥 𝑧 ¬ 𝑥𝑥 → ¬ 𝑧 𝑧)
119, 10syl 17 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ¬ 𝑧 𝑧)
12 eleq1 2900 . . . . . . . . . . . . . . 15 ( 𝑧 = 𝑡 → ( 𝑧 𝑧𝑡 𝑧))
1312notbid 320 . . . . . . . . . . . . . 14 ( 𝑧 = 𝑡 → (¬ 𝑧 𝑧 ↔ ¬ 𝑡 𝑧))
1411, 13syl5ibcom 247 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
1514a1dd 50 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
168simpld 497 . . . . . . . . . . . . . . . . 17 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → Tr 𝑧)
17 trss 5173 . . . . . . . . . . . . . . . . 17 (Tr 𝑧 → (𝑡 𝑧𝑡 𝑧))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧𝑡 𝑧))
19 eqss 3981 . . . . . . . . . . . . . . . . 17 ( 𝑧 = 𝑡 ↔ ( 𝑧𝑡𝑡 𝑧))
2019simplbi2com 505 . . . . . . . . . . . . . . . 16 (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡))
2118, 20syl6 35 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡)))
2221com23 86 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (𝑡 𝑧 𝑧 = 𝑡)))
23 con3 156 . . . . . . . . . . . . . 14 ((𝑡 𝑧 𝑧 = 𝑡) → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
2422, 23syl6 35 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧)))
2524com23 86 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (¬ 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
2615, 25pm2.61d 181 . . . . . . . . . . 11 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
276, 26sylanb 583 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
285, 27syldan 593 . . . . . . . . 9 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
294, 28syl5 34 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝑧 → ¬ 𝑡 𝑧))
3029ralrimiv 3181 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑡𝑧 ¬ 𝑡 𝑧)
31 eleq2 2901 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑡𝑤𝑡 𝑧))
3231notbid 320 . . . . . . . . 9 (𝑤 = 𝑧 → (¬ 𝑡𝑤 ↔ ¬ 𝑡 𝑧))
3332ralbidv 3197 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑡𝑧 ¬ 𝑡𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡 𝑧))
3433rspcev 3622 . . . . . . 7 (( 𝑧𝑧 ∧ ∀𝑡𝑧 ¬ 𝑡 𝑧) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
353, 30, 34syl2anc 586 . . . . . 6 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
3635expcom 416 . . . . 5 (∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
371, 36syl6com 37 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧𝐴 → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)))
3837impd 413 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
3938alrimiv 1924 . 2 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
40 df-fr 5508 . . 3 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤))
41 epel 5463 . . . . . . . 8 (𝑡 E 𝑤𝑡𝑤)
4241notbii 322 . . . . . . 7 𝑡 E 𝑤 ↔ ¬ 𝑡𝑤)
4342ralbii 3165 . . . . . 6 (∀𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡𝑤)
4443rexbii 3247 . . . . 5 (∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
4544imbi2i 338 . . . 4 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4645albii 1816 . . 3 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4740, 46bitri 277 . 2 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4839, 47sylibr 236 1 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1531   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  wpss 3936  c0 4290   cint 4868   class class class wbr 5058  Tr wtr 5164   E cep 5458   Fr wfr 5505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-fr 5508  df-suc 6191
This theorem is referenced by:  dfon2  33032
  Copyright terms: Public domain W3C validator