| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3601 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 |
| This theorem is referenced by: elinti 4935 trss 5250 fvn0ssdmfun 7074 dff3 7100 2fvcoidd 7299 ofrval 7691 limsuc 7852 limuni3 7855 peano5 7897 frxp 8133 wfrdmclOLD 8339 smo11 8386 odi 8599 supub 9481 suplub 9482 elirrv 9618 dfom3 9669 noinfep 9682 tcrank 9906 alephle 10110 dfac5lem5 10149 dfac2b 10153 cofsmo 10291 coftr 10295 infpssrlem4 10328 isf34lem6 10402 axcc2lem 10458 domtriomlem 10464 axdc2lem 10470 axdc3lem2 10473 axdc4lem 10477 ac5b 10500 zorn2lem2 10519 zorn2lem6 10523 pwcfsdom 10605 inar1 10797 grupw 10817 grupr 10819 gruurn 10820 grothpw 10848 grothpwex 10849 axgroth6 10850 grothomex 10851 nqereu 10951 supsrlem 11133 axpre-sup 11191 dedekind 11406 dedekindle 11407 supmullem1 12220 supmul 12222 peano5nni 12251 dfnn2 12261 peano5uzi 12690 zindd 12702 lcmfdvds 16661 lcmfunsn 16663 1arith 16947 ramcl 17049 clatleglb 18532 pslem 18586 cyccom 19190 rngisomring1 20436 psgndiflemA 21573 eqcoe1ply1eq 22251 mvmumamul1 22508 smadiadetlem0 22615 chpscmat 22796 basis2 22905 tg2 22919 clsndisj 23029 cnpimaex 23210 t1sncld 23280 regsep 23288 nrmsep3 23309 cmpsub 23354 2ndc1stc 23405 refssex 23465 ptfinfin 23473 txcnpi 23562 txcmplem1 23595 tx1stc 23604 filss 23807 ufilss 23859 fclsopni 23969 fclsrest 23978 alexsubb 24000 alexsubALTlem2 24002 alexsubALTlem4 24004 ghmcnp 24069 qustgplem 24075 mopni 24449 metrest 24481 metcnpi 24501 metcnpi2 24502 nmolb 24674 nmoleub2lem2 25085 ovoliunlem1 25473 ovolicc2lem3 25490 mblsplit 25503 fta1b 26147 plycj 26253 plycjOLD 26255 lgamgulmlem1 27008 sqfpc 27116 ostth2lem2 27614 ostth3 27618 sltval2 27637 nogt01o 27677 madebdayim 27862 madebdaylemlrcut 27873 precsexlem9 28175 dfn0s2 28272 peano5uzs 28326 vdiscusgr 29477 0vtxrusgr 29523 rusgrnumwrdl2 29532 ewlkinedg 29550 eupthseg 30153 upgreupthseg 30156 numclwwlk1 30308 l2p 30426 lpni 30427 nvz 30616 chcompl 31189 ocin 31243 hmopidmchi 32098 dmdmd 32247 dmdbr5 32255 mdsl1i 32268 sigaclci 34092 bnj23 34691 kur14lem9 35178 sconnpht 35193 cvmsdisj 35234 sat1el2xp 35343 untelirr 35667 untsucf 35669 dfon2lem4 35746 dfon2lem6 35748 dfon2lem7 35749 dfon2lem8 35750 dfon2 35752 fwddifnp1 36125 domalom 37364 pibt2 37377 poimirlem18 37604 poimirlem21 37607 heibor1lem 37775 heiborlem4 37780 heiborlem6 37782 atlex 39276 psubspi 39708 elpcliN 39854 ldilval 40074 trlord 40530 tendotp 40722 hdmapval2 41793 cantnfresb 43299 pwelg 43535 gneispace0nelrn2 44116 gneispaceel2 44119 gneispacess2 44121 stoweid 46035 iccpartimp 47362 iccpartltu 47370 iccpartgtl 47371 iccpartleu 47373 iccpartgel 47374 isuspgrim0 47830 gricushgr 47844 1arymaptf1 48521 |
| Copyright terms: Public domain | W3C validator |