Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 3547 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 |
This theorem is referenced by: elinti 4885 trss 5196 fvn0ssdmfun 6934 dff3 6958 2fvcoidd 7149 ofrval 7523 limsuc 7671 limuni3 7674 peano5 7714 frxp 7938 wfrdmclOLD 8119 smo11 8166 odi 8372 supub 9148 suplub 9149 elirrv 9285 dfom3 9335 noinfep 9348 tcrank 9573 alephle 9775 dfac5lem5 9814 dfac2b 9817 cofsmo 9956 coftr 9960 infpssrlem4 9993 isf34lem6 10067 axcc2lem 10123 domtriomlem 10129 axdc2lem 10135 axdc3lem2 10138 axdc4lem 10142 ac5b 10165 zorn2lem2 10184 zorn2lem6 10188 pwcfsdom 10270 inar1 10462 grupw 10482 grupr 10484 gruurn 10485 grothpw 10513 grothpwex 10514 axgroth6 10515 grothomex 10516 nqereu 10616 supsrlem 10798 axpre-sup 10856 dedekind 11068 dedekindle 11069 supmullem1 11875 supmul 11877 peano5nni 11906 dfnn2 11916 peano5uzi 12339 zindd 12351 lcmfdvds 16275 lcmfunsn 16277 1arith 16556 ramcl 16658 clatleglb 18151 pslem 18205 cyccom 18737 cygablOLD 19407 psgndiflemA 20718 eqcoe1ply1eq 21378 mvmumamul1 21611 smadiadetlem0 21718 chpscmat 21899 basis2 22009 tg2 22023 clsndisj 22134 cnpimaex 22315 t1sncld 22385 regsep 22393 nrmsep3 22414 cmpsub 22459 2ndc1stc 22510 refssex 22570 ptfinfin 22578 txcnpi 22667 txcmplem1 22700 tx1stc 22709 filss 22912 ufilss 22964 fclsopni 23074 fclsrest 23083 alexsubb 23105 alexsubALTlem2 23107 alexsubALTlem4 23109 ghmcnp 23174 qustgplem 23180 mopni 23554 metrest 23586 metcnpi 23606 metcnpi2 23607 nmolb 23787 nmoleub2lem2 24185 ovoliunlem1 24571 ovolicc2lem3 24588 mblsplit 24601 fta1b 25239 plycj 25343 lgamgulmlem1 26083 sqfpc 26191 ostth2lem2 26687 ostth3 26691 vdiscusgr 27801 0vtxrusgr 27847 rusgrnumwrdl2 27856 ewlkinedg 27874 eupthseg 28471 upgreupthseg 28474 numclwwlk1 28626 l2p 28742 lpni 28743 nvz 28932 chcompl 29505 ocin 29559 hmopidmchi 30414 dmdmd 30563 dmdbr5 30571 mdsl1i 30584 sigaclci 32000 bnj23 32597 kur14lem9 33076 sconnpht 33091 cvmsdisj 33132 sat1el2xp 33241 untelirr 33549 untsucf 33551 dfon2lem4 33668 dfon2lem6 33670 dfon2lem7 33671 dfon2lem8 33672 dfon2 33674 sltval2 33786 nogt01o 33826 madebdayim 33997 madebdaylemlrcut 34006 fwddifnp1 34394 domalom 35502 pibt2 35515 poimirlem18 35722 poimirlem21 35725 heibor1lem 35894 heiborlem4 35899 heiborlem6 35901 atlex 37257 psubspi 37688 elpcliN 37834 ldilval 38054 trlord 38510 tendotp 38702 hdmapval2 39773 pwelg 41056 gneispace0nelrn2 41640 gneispaceel2 41643 gneispacess2 41645 stoweid 43494 iccpartimp 44757 iccpartltu 44765 iccpartgtl 44766 iccpartleu 44768 iccpartgel 44769 isomushgr 45166 isomuspgrlem1 45167 isomuspgr 45174 isomgrtrlem 45178 1arymaptf1 45876 |
Copyright terms: Public domain | W3C validator |