![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 3608 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 |
This theorem is referenced by: elinti 4959 trss 5276 fvn0ssdmfun 7076 dff3 7101 2fvcoidd 7297 ofrval 7684 limsuc 7840 limuni3 7843 peano5 7886 frxp 8114 wfrdmclOLD 8319 smo11 8366 odi 8581 supub 9456 suplub 9457 elirrv 9593 dfom3 9644 noinfep 9657 tcrank 9881 alephle 10085 dfac5lem5 10124 dfac2b 10127 cofsmo 10266 coftr 10270 infpssrlem4 10303 isf34lem6 10377 axcc2lem 10433 domtriomlem 10439 axdc2lem 10445 axdc3lem2 10448 axdc4lem 10452 ac5b 10475 zorn2lem2 10494 zorn2lem6 10498 pwcfsdom 10580 inar1 10772 grupw 10792 grupr 10794 gruurn 10795 grothpw 10823 grothpwex 10824 axgroth6 10825 grothomex 10826 nqereu 10926 supsrlem 11108 axpre-sup 11166 dedekind 11381 dedekindle 11382 supmullem1 12188 supmul 12190 peano5nni 12219 dfnn2 12229 peano5uzi 12655 zindd 12667 lcmfdvds 16583 lcmfunsn 16585 1arith 16864 ramcl 16966 clatleglb 18475 pslem 18529 cyccom 19118 rngisomring1 20359 psgndiflemA 21373 eqcoe1ply1eq 22041 mvmumamul1 22276 smadiadetlem0 22383 chpscmat 22564 basis2 22674 tg2 22688 clsndisj 22799 cnpimaex 22980 t1sncld 23050 regsep 23058 nrmsep3 23079 cmpsub 23124 2ndc1stc 23175 refssex 23235 ptfinfin 23243 txcnpi 23332 txcmplem1 23365 tx1stc 23374 filss 23577 ufilss 23629 fclsopni 23739 fclsrest 23748 alexsubb 23770 alexsubALTlem2 23772 alexsubALTlem4 23774 ghmcnp 23839 qustgplem 23845 mopni 24221 metrest 24253 metcnpi 24273 metcnpi2 24274 nmolb 24454 nmoleub2lem2 24856 ovoliunlem1 25243 ovolicc2lem3 25260 mblsplit 25273 fta1b 25911 plycj 26015 lgamgulmlem1 26757 sqfpc 26865 ostth2lem2 27361 ostth3 27365 sltval2 27383 nogt01o 27423 madebdayim 27607 madebdaylemlrcut 27618 precsexlem9 27888 peano5n0s 27923 dfn0s2 27929 vdiscusgr 29043 0vtxrusgr 29089 rusgrnumwrdl2 29098 ewlkinedg 29116 eupthseg 29714 upgreupthseg 29717 numclwwlk1 29869 l2p 29987 lpni 29988 nvz 30177 chcompl 30750 ocin 30804 hmopidmchi 31659 dmdmd 31808 dmdbr5 31816 mdsl1i 31829 sigaclci 33416 bnj23 34015 kur14lem9 34491 sconnpht 34506 cvmsdisj 34547 sat1el2xp 34656 untelirr 34969 untsucf 34971 dfon2lem4 35050 dfon2lem6 35052 dfon2lem7 35053 dfon2lem8 35054 dfon2 35056 fwddifnp1 35429 domalom 36588 pibt2 36601 poimirlem18 36809 poimirlem21 36812 heibor1lem 36980 heiborlem4 36985 heiborlem6 36987 atlex 38489 psubspi 38921 elpcliN 39067 ldilval 39287 trlord 39743 tendotp 39935 hdmapval2 41006 cantnfresb 42376 pwelg 42613 gneispace0nelrn2 43194 gneispaceel2 43197 gneispacess2 43199 stoweid 45078 iccpartimp 46384 iccpartltu 46392 iccpartgtl 46393 iccpartleu 46395 iccpartgel 46396 isomushgr 46793 isomuspgrlem1 46794 isomuspgr 46801 isomgrtrlem 46805 1arymaptf1 47416 |
Copyright terms: Public domain | W3C validator |