| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3597 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 |
| This theorem is referenced by: elinti 4931 trss 5240 fvn0ssdmfun 7063 dff3 7089 2fvcoidd 7289 ofrval 7681 limsuc 7842 limuni3 7845 peano5 7887 frxp 8123 wfrdmclOLD 8329 smo11 8376 odi 8589 supub 9469 suplub 9470 elirrv 9608 dfom3 9659 noinfep 9672 tcrank 9896 alephle 10100 dfac5lem5 10139 dfac2b 10143 cofsmo 10281 coftr 10285 infpssrlem4 10318 isf34lem6 10392 axcc2lem 10448 domtriomlem 10454 axdc2lem 10460 axdc3lem2 10463 axdc4lem 10467 ac5b 10490 zorn2lem2 10509 zorn2lem6 10513 pwcfsdom 10595 inar1 10787 grupw 10807 grupr 10809 gruurn 10810 grothpw 10838 grothpwex 10839 axgroth6 10840 grothomex 10841 nqereu 10941 supsrlem 11123 axpre-sup 11181 dedekind 11396 dedekindle 11397 supmullem1 12210 supmul 12212 peano5nni 12241 dfnn2 12251 peano5uzi 12680 zindd 12692 lcmfdvds 16659 lcmfunsn 16661 1arith 16945 ramcl 17047 clatleglb 18526 pslem 18580 cyccom 19184 rngisomring1 20426 psgndiflemA 21559 eqcoe1ply1eq 22235 mvmumamul1 22490 smadiadetlem0 22597 chpscmat 22778 basis2 22887 tg2 22901 clsndisj 23011 cnpimaex 23192 t1sncld 23262 regsep 23270 nrmsep3 23291 cmpsub 23336 2ndc1stc 23387 refssex 23447 ptfinfin 23455 txcnpi 23544 txcmplem1 23577 tx1stc 23586 filss 23789 ufilss 23841 fclsopni 23951 fclsrest 23960 alexsubb 23982 alexsubALTlem2 23984 alexsubALTlem4 23986 ghmcnp 24051 qustgplem 24057 mopni 24429 metrest 24461 metcnpi 24481 metcnpi2 24482 nmolb 24654 nmoleub2lem2 25065 ovoliunlem1 25453 ovolicc2lem3 25470 mblsplit 25483 fta1b 26127 plycj 26233 plycjOLD 26235 lgamgulmlem1 26989 sqfpc 27097 ostth2lem2 27595 ostth3 27599 sltval2 27618 nogt01o 27658 madebdayim 27843 madebdaylemlrcut 27854 precsexlem9 28156 dfn0s2 28253 peano5uzs 28307 vdiscusgr 29457 0vtxrusgr 29503 rusgrnumwrdl2 29512 ewlkinedg 29530 eupthseg 30133 upgreupthseg 30136 numclwwlk1 30288 l2p 30406 lpni 30407 nvz 30596 chcompl 31169 ocin 31223 hmopidmchi 32078 dmdmd 32227 dmdbr5 32235 mdsl1i 32248 sigaclci 34109 bnj23 34695 kur14lem9 35182 sconnpht 35197 cvmsdisj 35238 sat1el2xp 35347 untelirr 35671 untsucf 35673 dfon2lem4 35750 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon2 35756 fwddifnp1 36129 domalom 37368 pibt2 37381 poimirlem18 37608 poimirlem21 37611 heibor1lem 37779 heiborlem4 37784 heiborlem6 37786 atlex 39280 psubspi 39712 elpcliN 39858 ldilval 40078 trlord 40534 tendotp 40726 hdmapval2 41797 cantnfresb 43295 pwelg 43531 gneispace0nelrn2 44112 gneispaceel2 44115 gneispacess2 44117 stoweid 46040 iccpartimp 47379 iccpartltu 47387 iccpartgtl 47388 iccpartleu 47390 iccpartgel 47391 isuspgrim0 47855 gricushgr 47878 1arymaptf1 48570 |
| Copyright terms: Public domain | W3C validator |