| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3568 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: elinti 4901 trss 5203 fvn0ssdmfun 7002 dff3 7028 2fvcoidd 7226 ofrval 7617 limsuc 7774 limuni3 7777 peano5 7818 frxp 8051 smo11 8279 odi 8489 supub 9338 suplub 9339 elirrvOLD 9479 dfom3 9532 noinfep 9545 tcrank 9772 alephle 9974 dfac5lem5 10013 dfac2b 10017 cofsmo 10155 coftr 10159 infpssrlem4 10192 isf34lem6 10266 axcc2lem 10322 domtriomlem 10328 axdc2lem 10334 axdc3lem2 10337 axdc4lem 10341 ac5b 10364 zorn2lem2 10383 zorn2lem6 10387 pwcfsdom 10469 inar1 10661 grupw 10681 grupr 10683 gruurn 10684 grothpw 10712 grothpwex 10713 axgroth6 10714 grothomex 10715 nqereu 10815 supsrlem 10997 axpre-sup 11055 dedekind 11271 dedekindle 11272 supmullem1 12087 supmul 12089 peano5nni 12123 dfnn2 12133 peano5uzi 12557 zindd 12569 lcmfdvds 16548 lcmfunsn 16550 1arith 16834 ramcl 16936 clatleglb 18419 pslem 18473 cyccom 19110 rngisomring1 20381 psgndiflemA 21533 eqcoe1ply1eq 22209 mvmumamul1 22464 smadiadetlem0 22571 chpscmat 22752 basis2 22861 tg2 22875 clsndisj 22985 cnpimaex 23166 t1sncld 23236 regsep 23244 nrmsep3 23265 cmpsub 23310 2ndc1stc 23361 refssex 23421 ptfinfin 23429 txcnpi 23518 txcmplem1 23551 tx1stc 23560 filss 23763 ufilss 23815 fclsopni 23925 fclsrest 23934 alexsubb 23956 alexsubALTlem2 23958 alexsubALTlem4 23960 ghmcnp 24025 qustgplem 24031 mopni 24402 metrest 24434 metcnpi 24454 metcnpi2 24455 nmolb 24627 nmoleub2lem2 25038 ovoliunlem1 25425 ovolicc2lem3 25442 mblsplit 25455 fta1b 26099 plycj 26205 plycjOLD 26207 lgamgulmlem1 26961 sqfpc 27069 ostth2lem2 27567 ostth3 27571 sltval2 27590 nogt01o 27630 madebdayim 27828 madebdaylemlrcut 27839 precsexlem9 28148 onsiso 28200 bdayon 28204 dfn0s2 28255 onsfi 28278 peano5uzs 28323 vdiscusgr 29505 0vtxrusgr 29551 rusgrnumwrdl2 29560 ewlkinedg 29578 eupthseg 30178 upgreupthseg 30181 numclwwlk1 30333 l2p 30451 lpni 30452 nvz 30641 chcompl 31214 ocin 31268 hmopidmchi 32123 dmdmd 32272 dmdbr5 32280 mdsl1i 32293 sigaclci 34137 bnj23 34722 kur14lem9 35250 sconnpht 35265 cvmsdisj 35306 sat1el2xp 35415 untelirr 35744 untsucf 35746 dfon2lem4 35820 dfon2lem6 35822 dfon2lem7 35823 dfon2lem8 35824 dfon2 35826 fwddifnp1 36199 domalom 37438 pibt2 37451 poimirlem18 37678 poimirlem21 37681 heibor1lem 37849 heiborlem4 37854 heiborlem6 37856 atlex 39355 psubspi 39786 elpcliN 39932 ldilval 40152 trlord 40608 tendotp 40800 hdmapval2 41871 cantnfresb 43357 pwelg 43593 gneispace0nelrn2 44174 gneispaceel2 44177 gneispacess2 44179 stoweid 46101 iccpartimp 47448 iccpartltu 47456 iccpartgtl 47457 iccpartleu 47459 iccpartgel 47460 isuspgrim0 47925 gricushgr 47948 1arymaptf1 48674 |
| Copyright terms: Public domain | W3C validator |