| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3581 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: elinti 4915 trss 5220 fvn0ssdmfun 7028 dff3 7054 2fvcoidd 7254 ofrval 7645 limsuc 7805 limuni3 7808 peano5 7849 frxp 8082 smo11 8310 odi 8520 supub 9386 suplub 9387 elirrv 9525 dfom3 9576 noinfep 9589 tcrank 9813 alephle 10017 dfac5lem5 10056 dfac2b 10060 cofsmo 10198 coftr 10202 infpssrlem4 10235 isf34lem6 10309 axcc2lem 10365 domtriomlem 10371 axdc2lem 10377 axdc3lem2 10380 axdc4lem 10384 ac5b 10407 zorn2lem2 10426 zorn2lem6 10430 pwcfsdom 10512 inar1 10704 grupw 10724 grupr 10726 gruurn 10727 grothpw 10755 grothpwex 10756 axgroth6 10757 grothomex 10758 nqereu 10858 supsrlem 11040 axpre-sup 11098 dedekind 11313 dedekindle 11314 supmullem1 12129 supmul 12131 peano5nni 12165 dfnn2 12175 peano5uzi 12599 zindd 12611 lcmfdvds 16588 lcmfunsn 16590 1arith 16874 ramcl 16976 clatleglb 18453 pslem 18507 cyccom 19111 rngisomring1 20353 psgndiflemA 21486 eqcoe1ply1eq 22162 mvmumamul1 22417 smadiadetlem0 22524 chpscmat 22705 basis2 22814 tg2 22828 clsndisj 22938 cnpimaex 23119 t1sncld 23189 regsep 23197 nrmsep3 23218 cmpsub 23263 2ndc1stc 23314 refssex 23374 ptfinfin 23382 txcnpi 23471 txcmplem1 23504 tx1stc 23513 filss 23716 ufilss 23768 fclsopni 23878 fclsrest 23887 alexsubb 23909 alexsubALTlem2 23911 alexsubALTlem4 23913 ghmcnp 23978 qustgplem 23984 mopni 24356 metrest 24388 metcnpi 24408 metcnpi2 24409 nmolb 24581 nmoleub2lem2 24992 ovoliunlem1 25379 ovolicc2lem3 25396 mblsplit 25409 fta1b 26053 plycj 26159 plycjOLD 26161 lgamgulmlem1 26915 sqfpc 27023 ostth2lem2 27521 ostth3 27525 sltval2 27544 nogt01o 27584 madebdayim 27775 madebdaylemlrcut 27786 precsexlem9 28093 onsiso 28145 bdayon 28149 dfn0s2 28200 onsfi 28223 peano5uzs 28268 vdiscusgr 29435 0vtxrusgr 29481 rusgrnumwrdl2 29490 ewlkinedg 29508 eupthseg 30108 upgreupthseg 30111 numclwwlk1 30263 l2p 30381 lpni 30382 nvz 30571 chcompl 31144 ocin 31198 hmopidmchi 32053 dmdmd 32202 dmdbr5 32210 mdsl1i 32223 sigaclci 34095 bnj23 34681 kur14lem9 35174 sconnpht 35189 cvmsdisj 35230 sat1el2xp 35339 untelirr 35668 untsucf 35670 dfon2lem4 35747 dfon2lem6 35749 dfon2lem7 35750 dfon2lem8 35751 dfon2 35753 fwddifnp1 36126 domalom 37365 pibt2 37378 poimirlem18 37605 poimirlem21 37608 heibor1lem 37776 heiborlem4 37781 heiborlem6 37783 atlex 39282 psubspi 39714 elpcliN 39860 ldilval 40080 trlord 40536 tendotp 40728 hdmapval2 41799 cantnfresb 43286 pwelg 43522 gneispace0nelrn2 44103 gneispaceel2 44106 gneispacess2 44108 stoweid 46034 iccpartimp 47391 iccpartltu 47399 iccpartgtl 47400 iccpartleu 47402 iccpartgel 47403 isuspgrim0 47867 gricushgr 47890 1arymaptf1 48604 |
| Copyright terms: Public domain | W3C validator |