| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3569 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 |
| This theorem is referenced by: elinti 4908 trss 5212 fvn0ssdmfun 7016 dff3 7042 2fvcoidd 7240 ofrval 7631 limsuc 7788 limuni3 7791 peano5 7832 frxp 8065 smo11 8293 odi 8503 supub 9354 suplub 9355 elirrvOLD 9495 dfom3 9548 noinfep 9561 tcrank 9788 alephle 9990 dfac5lem5 10029 dfac2b 10033 cofsmo 10171 coftr 10175 infpssrlem4 10208 isf34lem6 10282 axcc2lem 10338 domtriomlem 10344 axdc2lem 10350 axdc3lem2 10353 axdc4lem 10357 ac5b 10380 zorn2lem2 10399 zorn2lem6 10403 pwcfsdom 10485 inar1 10677 grupw 10697 grupr 10699 gruurn 10700 grothpw 10728 grothpwex 10729 axgroth6 10730 grothomex 10731 nqereu 10831 supsrlem 11013 axpre-sup 11071 dedekind 11287 dedekindle 11288 supmullem1 12103 supmul 12105 peano5nni 12139 dfnn2 12149 peano5uzi 12572 zindd 12584 lcmfdvds 16560 lcmfunsn 16562 1arith 16846 ramcl 16948 clatleglb 18432 pslem 18486 cyccom 19123 rngisomring1 20395 psgndiflemA 21547 eqcoe1ply1eq 22234 mvmumamul1 22489 smadiadetlem0 22596 chpscmat 22777 basis2 22886 tg2 22900 clsndisj 23010 cnpimaex 23191 t1sncld 23261 regsep 23269 nrmsep3 23290 cmpsub 23335 2ndc1stc 23386 refssex 23446 ptfinfin 23454 txcnpi 23543 txcmplem1 23576 tx1stc 23585 filss 23788 ufilss 23840 fclsopni 23950 fclsrest 23959 alexsubb 23981 alexsubALTlem2 23983 alexsubALTlem4 23985 ghmcnp 24050 qustgplem 24056 mopni 24427 metrest 24459 metcnpi 24479 metcnpi2 24480 nmolb 24652 nmoleub2lem2 25063 ovoliunlem1 25450 ovolicc2lem3 25467 mblsplit 25480 fta1b 26124 plycj 26230 plycjOLD 26232 lgamgulmlem1 26986 sqfpc 27094 ostth2lem2 27592 ostth3 27596 sltval2 27615 nogt01o 27655 madebdayim 27853 madebdaylemlrcut 27864 precsexlem9 28173 onsiso 28225 bdayon 28229 dfn0s2 28280 onsfi 28303 peano5uzs 28348 vdiscusgr 29531 0vtxrusgr 29577 rusgrnumwrdl2 29586 ewlkinedg 29604 eupthseg 30207 upgreupthseg 30210 numclwwlk1 30362 l2p 30480 lpni 30481 nvz 30670 chcompl 31243 ocin 31297 hmopidmchi 32152 dmdmd 32301 dmdbr5 32309 mdsl1i 32322 sigaclci 34217 bnj23 34802 kur14lem9 35330 sconnpht 35345 cvmsdisj 35386 sat1el2xp 35495 untelirr 35824 untsucf 35826 dfon2lem4 35900 dfon2lem6 35902 dfon2lem7 35903 dfon2lem8 35904 dfon2 35906 fwddifnp1 36281 domalom 37521 pibt2 37534 poimirlem18 37751 poimirlem21 37754 heibor1lem 37922 heiborlem4 37927 heiborlem6 37929 atlex 39488 psubspi 39919 elpcliN 40065 ldilval 40285 trlord 40741 tendotp 40933 hdmapval2 42004 cantnfresb 43481 pwelg 43717 gneispace0nelrn2 44298 gneispaceel2 44301 gneispacess2 44303 stoweid 46223 iccpartimp 47579 iccpartltu 47587 iccpartgtl 47588 iccpartleu 47590 iccpartgel 47591 isuspgrim0 48056 gricushgr 48079 1arymaptf1 48804 |
| Copyright terms: Public domain | W3C validator |