| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3587 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 |
| This theorem is referenced by: elinti 4922 trss 5228 fvn0ssdmfun 7049 dff3 7075 2fvcoidd 7275 ofrval 7668 limsuc 7828 limuni3 7831 peano5 7872 frxp 8108 smo11 8336 odi 8546 supub 9417 suplub 9418 elirrv 9556 dfom3 9607 noinfep 9620 tcrank 9844 alephle 10048 dfac5lem5 10087 dfac2b 10091 cofsmo 10229 coftr 10233 infpssrlem4 10266 isf34lem6 10340 axcc2lem 10396 domtriomlem 10402 axdc2lem 10408 axdc3lem2 10411 axdc4lem 10415 ac5b 10438 zorn2lem2 10457 zorn2lem6 10461 pwcfsdom 10543 inar1 10735 grupw 10755 grupr 10757 gruurn 10758 grothpw 10786 grothpwex 10787 axgroth6 10788 grothomex 10789 nqereu 10889 supsrlem 11071 axpre-sup 11129 dedekind 11344 dedekindle 11345 supmullem1 12160 supmul 12162 peano5nni 12196 dfnn2 12206 peano5uzi 12630 zindd 12642 lcmfdvds 16619 lcmfunsn 16621 1arith 16905 ramcl 17007 clatleglb 18484 pslem 18538 cyccom 19142 rngisomring1 20384 psgndiflemA 21517 eqcoe1ply1eq 22193 mvmumamul1 22448 smadiadetlem0 22555 chpscmat 22736 basis2 22845 tg2 22859 clsndisj 22969 cnpimaex 23150 t1sncld 23220 regsep 23228 nrmsep3 23249 cmpsub 23294 2ndc1stc 23345 refssex 23405 ptfinfin 23413 txcnpi 23502 txcmplem1 23535 tx1stc 23544 filss 23747 ufilss 23799 fclsopni 23909 fclsrest 23918 alexsubb 23940 alexsubALTlem2 23942 alexsubALTlem4 23944 ghmcnp 24009 qustgplem 24015 mopni 24387 metrest 24419 metcnpi 24439 metcnpi2 24440 nmolb 24612 nmoleub2lem2 25023 ovoliunlem1 25410 ovolicc2lem3 25427 mblsplit 25440 fta1b 26084 plycj 26190 plycjOLD 26192 lgamgulmlem1 26946 sqfpc 27054 ostth2lem2 27552 ostth3 27556 sltval2 27575 nogt01o 27615 madebdayim 27806 madebdaylemlrcut 27817 precsexlem9 28124 onsiso 28176 bdayon 28180 dfn0s2 28231 onsfi 28254 peano5uzs 28299 vdiscusgr 29466 0vtxrusgr 29512 rusgrnumwrdl2 29521 ewlkinedg 29539 eupthseg 30142 upgreupthseg 30145 numclwwlk1 30297 l2p 30415 lpni 30416 nvz 30605 chcompl 31178 ocin 31232 hmopidmchi 32087 dmdmd 32236 dmdbr5 32244 mdsl1i 32257 sigaclci 34129 bnj23 34715 kur14lem9 35208 sconnpht 35223 cvmsdisj 35264 sat1el2xp 35373 untelirr 35702 untsucf 35704 dfon2lem4 35781 dfon2lem6 35783 dfon2lem7 35784 dfon2lem8 35785 dfon2 35787 fwddifnp1 36160 domalom 37399 pibt2 37412 poimirlem18 37639 poimirlem21 37642 heibor1lem 37810 heiborlem4 37815 heiborlem6 37817 atlex 39316 psubspi 39748 elpcliN 39894 ldilval 40114 trlord 40570 tendotp 40762 hdmapval2 41833 cantnfresb 43320 pwelg 43556 gneispace0nelrn2 44137 gneispaceel2 44140 gneispacess2 44142 stoweid 46068 iccpartimp 47422 iccpartltu 47430 iccpartgtl 47431 iccpartleu 47433 iccpartgel 47434 isuspgrim0 47898 gricushgr 47921 1arymaptf1 48635 |
| Copyright terms: Public domain | W3C validator |