![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 3609 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 |
This theorem is referenced by: elinti 4960 trss 5277 fvn0ssdmfun 7077 dff3 7102 2fvcoidd 7295 ofrval 7682 limsuc 7838 limuni3 7841 peano5 7884 frxp 8112 wfrdmclOLD 8317 smo11 8364 odi 8579 supub 9454 suplub 9455 elirrv 9591 dfom3 9642 noinfep 9655 tcrank 9879 alephle 10083 dfac5lem5 10122 dfac2b 10125 cofsmo 10264 coftr 10268 infpssrlem4 10301 isf34lem6 10375 axcc2lem 10431 domtriomlem 10437 axdc2lem 10443 axdc3lem2 10446 axdc4lem 10450 ac5b 10473 zorn2lem2 10492 zorn2lem6 10496 pwcfsdom 10578 inar1 10770 grupw 10790 grupr 10792 gruurn 10793 grothpw 10821 grothpwex 10822 axgroth6 10823 grothomex 10824 nqereu 10924 supsrlem 11106 axpre-sup 11164 dedekind 11377 dedekindle 11378 supmullem1 12184 supmul 12186 peano5nni 12215 dfnn2 12225 peano5uzi 12651 zindd 12663 lcmfdvds 16579 lcmfunsn 16581 1arith 16860 ramcl 16962 clatleglb 18471 pslem 18525 cyccom 19080 psgndiflemA 21154 eqcoe1ply1eq 21821 mvmumamul1 22056 smadiadetlem0 22163 chpscmat 22344 basis2 22454 tg2 22468 clsndisj 22579 cnpimaex 22760 t1sncld 22830 regsep 22838 nrmsep3 22859 cmpsub 22904 2ndc1stc 22955 refssex 23015 ptfinfin 23023 txcnpi 23112 txcmplem1 23145 tx1stc 23154 filss 23357 ufilss 23409 fclsopni 23519 fclsrest 23528 alexsubb 23550 alexsubALTlem2 23552 alexsubALTlem4 23554 ghmcnp 23619 qustgplem 23625 mopni 24001 metrest 24033 metcnpi 24053 metcnpi2 24054 nmolb 24234 nmoleub2lem2 24632 ovoliunlem1 25019 ovolicc2lem3 25036 mblsplit 25049 fta1b 25687 plycj 25791 lgamgulmlem1 26533 sqfpc 26641 ostth2lem2 27137 ostth3 27141 sltval2 27159 nogt01o 27199 madebdayim 27382 madebdaylemlrcut 27393 precsexlem9 27661 vdiscusgr 28788 0vtxrusgr 28834 rusgrnumwrdl2 28843 ewlkinedg 28861 eupthseg 29459 upgreupthseg 29462 numclwwlk1 29614 l2p 29732 lpni 29733 nvz 29922 chcompl 30495 ocin 30549 hmopidmchi 31404 dmdmd 31553 dmdbr5 31561 mdsl1i 31574 sigaclci 33130 bnj23 33729 kur14lem9 34205 sconnpht 34220 cvmsdisj 34261 sat1el2xp 34370 untelirr 34677 untsucf 34679 dfon2lem4 34758 dfon2lem6 34760 dfon2lem7 34761 dfon2lem8 34762 dfon2 34764 fwddifnp1 35137 domalom 36285 pibt2 36298 poimirlem18 36506 poimirlem21 36509 heibor1lem 36677 heiborlem4 36682 heiborlem6 36684 atlex 38186 psubspi 38618 elpcliN 38764 ldilval 38984 trlord 39440 tendotp 39632 hdmapval2 40703 cantnfresb 42074 pwelg 42311 gneispace0nelrn2 42892 gneispaceel2 42895 gneispacess2 42897 stoweid 44779 iccpartimp 46085 iccpartltu 46093 iccpartgtl 46094 iccpartleu 46096 iccpartgel 46097 isomushgr 46494 isomuspgrlem1 46495 isomuspgr 46502 isomgrtrlem 46506 rngisomring1 46720 1arymaptf1 47328 |
Copyright terms: Public domain | W3C validator |