| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3575 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: elinti 4908 trss 5212 fvn0ssdmfun 7012 dff3 7038 2fvcoidd 7238 ofrval 7629 limsuc 7789 limuni3 7792 peano5 7833 frxp 8066 smo11 8294 odi 8504 supub 9368 suplub 9369 elirrvOLD 9509 dfom3 9562 noinfep 9575 tcrank 9799 alephle 10001 dfac5lem5 10040 dfac2b 10044 cofsmo 10182 coftr 10186 infpssrlem4 10219 isf34lem6 10293 axcc2lem 10349 domtriomlem 10355 axdc2lem 10361 axdc3lem2 10364 axdc4lem 10368 ac5b 10391 zorn2lem2 10410 zorn2lem6 10414 pwcfsdom 10496 inar1 10688 grupw 10708 grupr 10710 gruurn 10711 grothpw 10739 grothpwex 10740 axgroth6 10741 grothomex 10742 nqereu 10842 supsrlem 11024 axpre-sup 11082 dedekind 11298 dedekindle 11299 supmullem1 12114 supmul 12116 peano5nni 12150 dfnn2 12160 peano5uzi 12584 zindd 12596 lcmfdvds 16572 lcmfunsn 16574 1arith 16858 ramcl 16960 clatleglb 18443 pslem 18497 cyccom 19101 rngisomring1 20372 psgndiflemA 21527 eqcoe1ply1eq 22203 mvmumamul1 22458 smadiadetlem0 22565 chpscmat 22746 basis2 22855 tg2 22869 clsndisj 22979 cnpimaex 23160 t1sncld 23230 regsep 23238 nrmsep3 23259 cmpsub 23304 2ndc1stc 23355 refssex 23415 ptfinfin 23423 txcnpi 23512 txcmplem1 23545 tx1stc 23554 filss 23757 ufilss 23809 fclsopni 23919 fclsrest 23928 alexsubb 23950 alexsubALTlem2 23952 alexsubALTlem4 23954 ghmcnp 24019 qustgplem 24025 mopni 24397 metrest 24429 metcnpi 24449 metcnpi2 24450 nmolb 24622 nmoleub2lem2 25033 ovoliunlem1 25420 ovolicc2lem3 25437 mblsplit 25450 fta1b 26094 plycj 26200 plycjOLD 26202 lgamgulmlem1 26956 sqfpc 27064 ostth2lem2 27562 ostth3 27566 sltval2 27585 nogt01o 27625 madebdayim 27821 madebdaylemlrcut 27832 precsexlem9 28141 onsiso 28193 bdayon 28197 dfn0s2 28248 onsfi 28271 peano5uzs 28316 vdiscusgr 29496 0vtxrusgr 29542 rusgrnumwrdl2 29551 ewlkinedg 29569 eupthseg 30169 upgreupthseg 30172 numclwwlk1 30324 l2p 30442 lpni 30443 nvz 30632 chcompl 31205 ocin 31259 hmopidmchi 32114 dmdmd 32263 dmdbr5 32271 mdsl1i 32284 sigaclci 34118 bnj23 34704 kur14lem9 35206 sconnpht 35221 cvmsdisj 35262 sat1el2xp 35371 untelirr 35700 untsucf 35702 dfon2lem4 35779 dfon2lem6 35781 dfon2lem7 35782 dfon2lem8 35783 dfon2 35785 fwddifnp1 36158 domalom 37397 pibt2 37410 poimirlem18 37637 poimirlem21 37640 heibor1lem 37808 heiborlem4 37813 heiborlem6 37815 atlex 39314 psubspi 39746 elpcliN 39892 ldilval 40112 trlord 40568 tendotp 40760 hdmapval2 41831 cantnfresb 43317 pwelg 43553 gneispace0nelrn2 44134 gneispaceel2 44137 gneispacess2 44139 stoweid 46064 iccpartimp 47421 iccpartltu 47429 iccpartgtl 47430 iccpartleu 47432 iccpartgel 47433 isuspgrim0 47898 gricushgr 47921 1arymaptf1 48647 |
| Copyright terms: Public domain | W3C validator |