![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 3617 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 |
This theorem is referenced by: elinti 4959 trss 5275 fvn0ssdmfun 7093 dff3 7119 2fvcoidd 7316 ofrval 7708 limsuc 7869 limuni3 7872 peano5 7915 frxp 8149 wfrdmclOLD 8355 smo11 8402 odi 8615 supub 9496 suplub 9497 elirrv 9633 dfom3 9684 noinfep 9697 tcrank 9921 alephle 10125 dfac5lem5 10164 dfac2b 10168 cofsmo 10306 coftr 10310 infpssrlem4 10343 isf34lem6 10417 axcc2lem 10473 domtriomlem 10479 axdc2lem 10485 axdc3lem2 10488 axdc4lem 10492 ac5b 10515 zorn2lem2 10534 zorn2lem6 10538 pwcfsdom 10620 inar1 10812 grupw 10832 grupr 10834 gruurn 10835 grothpw 10863 grothpwex 10864 axgroth6 10865 grothomex 10866 nqereu 10966 supsrlem 11148 axpre-sup 11206 dedekind 11421 dedekindle 11422 supmullem1 12235 supmul 12237 peano5nni 12266 dfnn2 12276 peano5uzi 12704 zindd 12716 lcmfdvds 16675 lcmfunsn 16677 1arith 16960 ramcl 17062 clatleglb 18575 pslem 18629 cyccom 19233 rngisomring1 20484 psgndiflemA 21636 eqcoe1ply1eq 22318 mvmumamul1 22575 smadiadetlem0 22682 chpscmat 22863 basis2 22973 tg2 22987 clsndisj 23098 cnpimaex 23279 t1sncld 23349 regsep 23357 nrmsep3 23378 cmpsub 23423 2ndc1stc 23474 refssex 23534 ptfinfin 23542 txcnpi 23631 txcmplem1 23664 tx1stc 23673 filss 23876 ufilss 23928 fclsopni 24038 fclsrest 24047 alexsubb 24069 alexsubALTlem2 24071 alexsubALTlem4 24073 ghmcnp 24138 qustgplem 24144 mopni 24520 metrest 24552 metcnpi 24572 metcnpi2 24573 nmolb 24753 nmoleub2lem2 25162 ovoliunlem1 25550 ovolicc2lem3 25567 mblsplit 25580 fta1b 26225 plycj 26331 plycjOLD 26333 lgamgulmlem1 27086 sqfpc 27194 ostth2lem2 27692 ostth3 27696 sltval2 27715 nogt01o 27755 madebdayim 27940 madebdaylemlrcut 27951 precsexlem9 28253 dfn0s2 28350 peano5uzs 28404 vdiscusgr 29563 0vtxrusgr 29609 rusgrnumwrdl2 29618 ewlkinedg 29636 eupthseg 30234 upgreupthseg 30237 numclwwlk1 30389 l2p 30507 lpni 30508 nvz 30697 chcompl 31270 ocin 31324 hmopidmchi 32179 dmdmd 32328 dmdbr5 32336 mdsl1i 32349 sigaclci 34112 bnj23 34710 kur14lem9 35198 sconnpht 35213 cvmsdisj 35254 sat1el2xp 35363 untelirr 35687 untsucf 35689 dfon2lem4 35767 dfon2lem6 35769 dfon2lem7 35770 dfon2lem8 35771 dfon2 35773 fwddifnp1 36146 domalom 37386 pibt2 37399 poimirlem18 37624 poimirlem21 37627 heibor1lem 37795 heiborlem4 37800 heiborlem6 37802 atlex 39297 psubspi 39729 elpcliN 39875 ldilval 40095 trlord 40551 tendotp 40743 hdmapval2 41814 cantnfresb 43313 pwelg 43549 gneispace0nelrn2 44130 gneispaceel2 44133 gneispacess2 44135 stoweid 46018 iccpartimp 47341 iccpartltu 47349 iccpartgtl 47350 iccpartleu 47352 iccpartgel 47353 isuspgrim0 47809 gricushgr 47823 1arymaptf1 48491 |
Copyright terms: Public domain | W3C validator |