| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 3584 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: elinti 4919 trss 5225 fvn0ssdmfun 7046 dff3 7072 2fvcoidd 7272 ofrval 7665 limsuc 7825 limuni3 7828 peano5 7869 frxp 8105 smo11 8333 odi 8543 supub 9410 suplub 9411 elirrv 9549 dfom3 9600 noinfep 9613 tcrank 9837 alephle 10041 dfac5lem5 10080 dfac2b 10084 cofsmo 10222 coftr 10226 infpssrlem4 10259 isf34lem6 10333 axcc2lem 10389 domtriomlem 10395 axdc2lem 10401 axdc3lem2 10404 axdc4lem 10408 ac5b 10431 zorn2lem2 10450 zorn2lem6 10454 pwcfsdom 10536 inar1 10728 grupw 10748 grupr 10750 gruurn 10751 grothpw 10779 grothpwex 10780 axgroth6 10781 grothomex 10782 nqereu 10882 supsrlem 11064 axpre-sup 11122 dedekind 11337 dedekindle 11338 supmullem1 12153 supmul 12155 peano5nni 12189 dfnn2 12199 peano5uzi 12623 zindd 12635 lcmfdvds 16612 lcmfunsn 16614 1arith 16898 ramcl 17000 clatleglb 18477 pslem 18531 cyccom 19135 rngisomring1 20377 psgndiflemA 21510 eqcoe1ply1eq 22186 mvmumamul1 22441 smadiadetlem0 22548 chpscmat 22729 basis2 22838 tg2 22852 clsndisj 22962 cnpimaex 23143 t1sncld 23213 regsep 23221 nrmsep3 23242 cmpsub 23287 2ndc1stc 23338 refssex 23398 ptfinfin 23406 txcnpi 23495 txcmplem1 23528 tx1stc 23537 filss 23740 ufilss 23792 fclsopni 23902 fclsrest 23911 alexsubb 23933 alexsubALTlem2 23935 alexsubALTlem4 23937 ghmcnp 24002 qustgplem 24008 mopni 24380 metrest 24412 metcnpi 24432 metcnpi2 24433 nmolb 24605 nmoleub2lem2 25016 ovoliunlem1 25403 ovolicc2lem3 25420 mblsplit 25433 fta1b 26077 plycj 26183 plycjOLD 26185 lgamgulmlem1 26939 sqfpc 27047 ostth2lem2 27545 ostth3 27549 sltval2 27568 nogt01o 27608 madebdayim 27799 madebdaylemlrcut 27810 precsexlem9 28117 onsiso 28169 bdayon 28173 dfn0s2 28224 onsfi 28247 peano5uzs 28292 vdiscusgr 29459 0vtxrusgr 29505 rusgrnumwrdl2 29514 ewlkinedg 29532 eupthseg 30135 upgreupthseg 30138 numclwwlk1 30290 l2p 30408 lpni 30409 nvz 30598 chcompl 31171 ocin 31225 hmopidmchi 32080 dmdmd 32229 dmdbr5 32237 mdsl1i 32250 sigaclci 34122 bnj23 34708 kur14lem9 35201 sconnpht 35216 cvmsdisj 35257 sat1el2xp 35366 untelirr 35695 untsucf 35697 dfon2lem4 35774 dfon2lem6 35776 dfon2lem7 35777 dfon2lem8 35778 dfon2 35780 fwddifnp1 36153 domalom 37392 pibt2 37405 poimirlem18 37632 poimirlem21 37635 heibor1lem 37803 heiborlem4 37808 heiborlem6 37810 atlex 39309 psubspi 39741 elpcliN 39887 ldilval 40107 trlord 40563 tendotp 40755 hdmapval2 41826 cantnfresb 43313 pwelg 43549 gneispace0nelrn2 44130 gneispaceel2 44133 gneispacess2 44135 stoweid 46061 iccpartimp 47418 iccpartltu 47426 iccpartgtl 47427 iccpartleu 47429 iccpartgel 47430 isuspgrim0 47894 gricushgr 47917 1arymaptf1 48631 |
| Copyright terms: Public domain | W3C validator |