![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 3631 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: elinti 4979 trss 5294 fvn0ssdmfun 7108 dff3 7134 2fvcoidd 7333 ofrval 7726 limsuc 7886 limuni3 7889 peano5 7932 frxp 8167 wfrdmclOLD 8373 smo11 8420 odi 8635 supub 9528 suplub 9529 elirrv 9665 dfom3 9716 noinfep 9729 tcrank 9953 alephle 10157 dfac5lem5 10196 dfac2b 10200 cofsmo 10338 coftr 10342 infpssrlem4 10375 isf34lem6 10449 axcc2lem 10505 domtriomlem 10511 axdc2lem 10517 axdc3lem2 10520 axdc4lem 10524 ac5b 10547 zorn2lem2 10566 zorn2lem6 10570 pwcfsdom 10652 inar1 10844 grupw 10864 grupr 10866 gruurn 10867 grothpw 10895 grothpwex 10896 axgroth6 10897 grothomex 10898 nqereu 10998 supsrlem 11180 axpre-sup 11238 dedekind 11453 dedekindle 11454 supmullem1 12265 supmul 12267 peano5nni 12296 dfnn2 12306 peano5uzi 12732 zindd 12744 lcmfdvds 16689 lcmfunsn 16691 1arith 16974 ramcl 17076 clatleglb 18588 pslem 18642 cyccom 19243 rngisomring1 20494 psgndiflemA 21642 eqcoe1ply1eq 22324 mvmumamul1 22581 smadiadetlem0 22688 chpscmat 22869 basis2 22979 tg2 22993 clsndisj 23104 cnpimaex 23285 t1sncld 23355 regsep 23363 nrmsep3 23384 cmpsub 23429 2ndc1stc 23480 refssex 23540 ptfinfin 23548 txcnpi 23637 txcmplem1 23670 tx1stc 23679 filss 23882 ufilss 23934 fclsopni 24044 fclsrest 24053 alexsubb 24075 alexsubALTlem2 24077 alexsubALTlem4 24079 ghmcnp 24144 qustgplem 24150 mopni 24526 metrest 24558 metcnpi 24578 metcnpi2 24579 nmolb 24759 nmoleub2lem2 25168 ovoliunlem1 25556 ovolicc2lem3 25573 mblsplit 25586 fta1b 26231 plycj 26337 lgamgulmlem1 27090 sqfpc 27198 ostth2lem2 27696 ostth3 27700 sltval2 27719 nogt01o 27759 madebdayim 27944 madebdaylemlrcut 27955 precsexlem9 28257 dfn0s2 28354 peano5uzs 28408 vdiscusgr 29567 0vtxrusgr 29613 rusgrnumwrdl2 29622 ewlkinedg 29640 eupthseg 30238 upgreupthseg 30241 numclwwlk1 30393 l2p 30511 lpni 30512 nvz 30701 chcompl 31274 ocin 31328 hmopidmchi 32183 dmdmd 32332 dmdbr5 32340 mdsl1i 32353 sigaclci 34096 bnj23 34694 kur14lem9 35182 sconnpht 35197 cvmsdisj 35238 sat1el2xp 35347 untelirr 35670 untsucf 35672 dfon2lem4 35750 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon2 35756 fwddifnp1 36129 domalom 37370 pibt2 37383 poimirlem18 37598 poimirlem21 37601 heibor1lem 37769 heiborlem4 37774 heiborlem6 37776 atlex 39272 psubspi 39704 elpcliN 39850 ldilval 40070 trlord 40526 tendotp 40718 hdmapval2 41789 cantnfresb 43286 pwelg 43522 gneispace0nelrn2 44103 gneispaceel2 44106 gneispacess2 44108 stoweid 45984 iccpartimp 47291 iccpartltu 47299 iccpartgtl 47300 iccpartleu 47302 iccpartgel 47303 isuspgrim0 47756 gricushgr 47770 1arymaptf1 48376 |
Copyright terms: Public domain | W3C validator |