Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspccv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccv | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 3558 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 |
This theorem is referenced by: elinti 4889 trss 5201 fvn0ssdmfun 6961 dff3 6985 2fvcoidd 7178 ofrval 7554 limsuc 7705 limuni3 7708 peano5 7749 frxp 7976 wfrdmclOLD 8157 smo11 8204 odi 8419 supub 9227 suplub 9228 elirrv 9364 dfom3 9414 noinfep 9427 tcrank 9651 alephle 9853 dfac5lem5 9892 dfac2b 9895 cofsmo 10034 coftr 10038 infpssrlem4 10071 isf34lem6 10145 axcc2lem 10201 domtriomlem 10207 axdc2lem 10213 axdc3lem2 10216 axdc4lem 10220 ac5b 10243 zorn2lem2 10262 zorn2lem6 10266 pwcfsdom 10348 inar1 10540 grupw 10560 grupr 10562 gruurn 10563 grothpw 10591 grothpwex 10592 axgroth6 10593 grothomex 10594 nqereu 10694 supsrlem 10876 axpre-sup 10934 dedekind 11147 dedekindle 11148 supmullem1 11954 supmul 11956 peano5nni 11985 dfnn2 11995 peano5uzi 12418 zindd 12430 lcmfdvds 16356 lcmfunsn 16358 1arith 16637 ramcl 16739 clatleglb 18245 pslem 18299 cyccom 18831 cygablOLD 19501 psgndiflemA 20815 eqcoe1ply1eq 21477 mvmumamul1 21712 smadiadetlem0 21819 chpscmat 22000 basis2 22110 tg2 22124 clsndisj 22235 cnpimaex 22416 t1sncld 22486 regsep 22494 nrmsep3 22515 cmpsub 22560 2ndc1stc 22611 refssex 22671 ptfinfin 22679 txcnpi 22768 txcmplem1 22801 tx1stc 22810 filss 23013 ufilss 23065 fclsopni 23175 fclsrest 23184 alexsubb 23206 alexsubALTlem2 23208 alexsubALTlem4 23210 ghmcnp 23275 qustgplem 23281 mopni 23657 metrest 23689 metcnpi 23709 metcnpi2 23710 nmolb 23890 nmoleub2lem2 24288 ovoliunlem1 24675 ovolicc2lem3 24692 mblsplit 24705 fta1b 25343 plycj 25447 lgamgulmlem1 26187 sqfpc 26295 ostth2lem2 26791 ostth3 26795 vdiscusgr 27907 0vtxrusgr 27953 rusgrnumwrdl2 27962 ewlkinedg 27980 eupthseg 28579 upgreupthseg 28582 numclwwlk1 28734 l2p 28850 lpni 28851 nvz 29040 chcompl 29613 ocin 29667 hmopidmchi 30522 dmdmd 30671 dmdbr5 30679 mdsl1i 30692 sigaclci 32109 bnj23 32706 kur14lem9 33185 sconnpht 33200 cvmsdisj 33241 sat1el2xp 33350 untelirr 33658 untsucf 33660 dfon2lem4 33771 dfon2lem6 33773 dfon2lem7 33774 dfon2lem8 33775 dfon2 33777 sltval2 33868 nogt01o 33908 madebdayim 34079 madebdaylemlrcut 34088 fwddifnp1 34476 domalom 35584 pibt2 35597 poimirlem18 35804 poimirlem21 35807 heibor1lem 35976 heiborlem4 35981 heiborlem6 35983 atlex 37337 psubspi 37768 elpcliN 37914 ldilval 38134 trlord 38590 tendotp 38782 hdmapval2 39853 pwelg 41174 gneispace0nelrn2 41758 gneispaceel2 41761 gneispacess2 41763 stoweid 43611 iccpartimp 44880 iccpartltu 44888 iccpartgtl 44889 iccpartleu 44891 iccpartgel 44892 isomushgr 45289 isomuspgrlem1 45290 isomuspgr 45297 isomgrtrlem 45301 1arymaptf1 45999 |
Copyright terms: Public domain | W3C validator |