Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem8 Structured version   Visualization version   GIF version

Theorem dfon2lem8 33745
Description: Lemma for dfon2 33747. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.)
Assertion
Ref Expression
dfon2lem8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfon2lem8
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3434 . . . . . . 7 𝑥 ∈ V
2 dfon2lem3 33740 . . . . . . 7 (𝑥 ∈ V → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧)))
31, 2ax-mp 5 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧))
43simpld 494 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝑥)
54ralimi 3088 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝐴 Tr 𝑥)
6 trint 5211 . . . 4 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
75, 6syl 17 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝐴)
87adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → Tr 𝐴)
91dfon2lem7 33744 . . . . . . 7 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
109alrimiv 1933 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
1110ralimi 3088 . . . . 5 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
12 df-ral 3070 . . . . . . 7 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥(𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
13 19.21v 1945 . . . . . . . 8 (∀𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) ↔ (𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
1413albii 1825 . . . . . . 7 (∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) ↔ ∀𝑥(𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
1512, 14bitr4i 277 . . . . . 6 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
16 impexp 450 . . . . . . . 8 (((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
17162albii 1826 . . . . . . 7 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
18 eluni2 4848 . . . . . . . . . . 11 (𝑤 𝐴 ↔ ∃𝑥𝐴 𝑤𝑥)
1918biimpi 215 . . . . . . . . . 10 (𝑤 𝐴 → ∃𝑥𝐴 𝑤𝑥)
2019imim1i 63 . . . . . . . . 9 ((∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → (𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2120alimi 1817 . . . . . . . 8 (∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤(𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
22 alcom 2159 . . . . . . . . 9 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
23 19.23v 1948 . . . . . . . . . . 11 (∀𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥(𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
24 df-rex 3071 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤𝑥 ↔ ∃𝑥(𝑥𝐴𝑤𝑥))
2524imbi1i 349 . . . . . . . . . . 11 ((∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥(𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2623, 25bitr4i 277 . . . . . . . . . 10 (∀𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2726albii 1825 . . . . . . . . 9 (∀𝑤𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2822, 27bitri 274 . . . . . . . 8 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
29 df-ral 3070 . . . . . . . 8 (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) ↔ ∀𝑤(𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3021, 28, 293imtr4i 291 . . . . . . 7 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3117, 30sylbir 234 . . . . . 6 (∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3215, 31sylbi 216 . . . . 5 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3311, 32syl 17 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3433adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
35 intssuni 4906 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
36 ssralv 3991 . . . . 5 ( 𝐴 𝐴 → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3735, 36syl 17 . . . 4 (𝐴 ≠ ∅ → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3837adantr 480 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3934, 38mpd 15 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
40 dfon2lem6 33743 . . 3 ((Tr 𝐴 ∧ ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴))
41 intex 5264 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
42 dfon2lem3 33740 . . . . . . . . . . 11 ( 𝐴 ∈ V → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡)))
4341, 42sylbi 216 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡)))
4443imp 406 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡))
4544simprd 495 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ∀𝑡 𝐴 ¬ 𝑡𝑡)
46 untelirr 33628 . . . . . . . 8 (∀𝑡 𝐴 ¬ 𝑡𝑡 → ¬ 𝐴 𝐴)
4745, 46syl 17 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ¬ 𝐴 𝐴)
4847adantlr 711 . . . . . 6 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ¬ 𝐴 𝐴)
49 risset 3195 . . . . . . . . . 10 ( 𝐴𝐴 ↔ ∃𝑡𝐴 𝑡 = 𝐴)
5049notbii 319 . . . . . . . . 9 𝐴𝐴 ↔ ¬ ∃𝑡𝐴 𝑡 = 𝐴)
51 ralnex 3165 . . . . . . . . 9 (∀𝑡𝐴 ¬ 𝑡 = 𝐴 ↔ ¬ ∃𝑡𝐴 𝑡 = 𝐴)
5250, 51bitr4i 277 . . . . . . . 8 𝐴𝐴 ↔ ∀𝑡𝐴 ¬ 𝑡 = 𝐴)
53 eqcom 2746 . . . . . . . . . . . 12 (𝑡 = 𝐴 𝐴 = 𝑡)
5453notbii 319 . . . . . . . . . . 11 𝑡 = 𝐴 ↔ ¬ 𝐴 = 𝑡)
5544simpld 494 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → Tr 𝐴)
5655adantlr 711 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → Tr 𝐴)
57 psseq2 4027 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑡 → (𝑦𝑥𝑦𝑡))
5857anbi1d 629 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑦𝑥 ∧ Tr 𝑦) ↔ (𝑦𝑡 ∧ Tr 𝑦)))
59 elequ2 2124 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝑦𝑥𝑦𝑡))
6058, 59imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6160albidv 1926 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6261rspccv 3557 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑡𝐴 → ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6362adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
64 intss1 4899 . . . . . . . . . . . . . . . 16 (𝑡𝐴 𝐴𝑡)
65 dfpss2 4024 . . . . . . . . . . . . . . . . . . . 20 ( 𝐴𝑡 ↔ ( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡))
66 psseq1 4026 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝐴 → (𝑦𝑡 𝐴𝑡))
67 treq 5201 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝐴 → (Tr 𝑦 ↔ Tr 𝐴))
6866, 67anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝐴 → ((𝑦𝑡 ∧ Tr 𝑦) ↔ ( 𝐴𝑡 ∧ Tr 𝐴)))
69 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝐴 → (𝑦𝑡 𝐴𝑡))
7068, 69imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝐴 → (((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) ↔ (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7170spcgv 3533 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝐴 ∈ V → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7241, 71sylbi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7372imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡))
7473expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → ( 𝐴𝑡 → (Tr 𝐴 𝐴𝑡)))
7565, 74syl5bir 242 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → (( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡) → (Tr 𝐴 𝐴𝑡)))
7675exp4b 430 . . . . . . . . . . . . . . . . . 18 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → ( 𝐴𝑡 → (¬ 𝐴 = 𝑡 → (Tr 𝐴 𝐴𝑡)))))
7776com45 97 . . . . . . . . . . . . . . . . 17 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → ( 𝐴𝑡 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
7877com23 86 . . . . . . . . . . . . . . . 16 (𝐴 ≠ ∅ → ( 𝐴𝑡 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
7964, 78syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ≠ ∅ → (𝑡𝐴 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
8163, 80mpdd 43 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡))))
8281adantr 480 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡))))
8356, 82mpid 44 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))
8454, 83syl7bi 254 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (¬ 𝑡 = 𝐴 𝐴𝑡)))
8584ralrimiv 3108 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ∀𝑡𝐴𝑡 = 𝐴 𝐴𝑡))
86 ralim 3084 . . . . . . . . 9 (∀𝑡𝐴𝑡 = 𝐴 𝐴𝑡) → (∀𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀𝑡𝐴 𝐴𝑡))
8785, 86syl 17 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (∀𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀𝑡𝐴 𝐴𝑡))
8852, 87syl5bi 241 . . . . . . 7 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (¬ 𝐴𝐴 → ∀𝑡𝐴 𝐴𝑡))
89 elintg 4892 . . . . . . . . 9 ( 𝐴 ∈ V → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9041, 89sylbi 216 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9190ad2antrr 722 . . . . . . 7 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9288, 91sylibrd 258 . . . . . 6 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (¬ 𝐴𝐴 𝐴 𝐴))
9348, 92mt3d 148 . . . . 5 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → 𝐴𝐴)
9493ex 412 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → 𝐴𝐴))
9594ancld 550 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴)))
9640, 95syl5 34 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ((Tr 𝐴 ∧ ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴)))
978, 39, 96mp2and 695 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1539   = wceq 1541  wex 1785  wcel 2109  wne 2944  wral 3065  wrex 3066  Vcvv 3430  wss 3891  wpss 3892  c0 4261   cuni 4844   cint 4884  Tr wtr 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-pw 4540  df-sn 4567  df-pr 4569  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-tr 5196  df-suc 6269
This theorem is referenced by:  dfon2lem9  33746
  Copyright terms: Public domain W3C validator