Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem8 Structured version   Visualization version   GIF version

Theorem dfon2lem8 35771
Description: Lemma for dfon2 35773. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.)
Assertion
Ref Expression
dfon2lem8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfon2lem8
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3481 . . . . . . 7 𝑥 ∈ V
2 dfon2lem3 35766 . . . . . . 7 (𝑥 ∈ V → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧)))
31, 2ax-mp 5 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧))
43simpld 494 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝑥)
54ralimi 3080 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝐴 Tr 𝑥)
6 trint 5282 . . . 4 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
75, 6syl 17 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝐴)
87adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → Tr 𝐴)
91dfon2lem7 35770 . . . . . . 7 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
109alrimiv 1924 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
1110ralimi 3080 . . . . 5 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
12 df-ral 3059 . . . . . . 7 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥(𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
13 19.21v 1936 . . . . . . . 8 (∀𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) ↔ (𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
1413albii 1815 . . . . . . 7 (∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) ↔ ∀𝑥(𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
1512, 14bitr4i 278 . . . . . 6 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
16 impexp 450 . . . . . . . 8 (((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
17162albii 1816 . . . . . . 7 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
18 eluni2 4915 . . . . . . . . . . 11 (𝑤 𝐴 ↔ ∃𝑥𝐴 𝑤𝑥)
1918biimpi 216 . . . . . . . . . 10 (𝑤 𝐴 → ∃𝑥𝐴 𝑤𝑥)
2019imim1i 63 . . . . . . . . 9 ((∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → (𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2120alimi 1807 . . . . . . . 8 (∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤(𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
22 alcom 2156 . . . . . . . . 9 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
23 19.23v 1939 . . . . . . . . . . 11 (∀𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥(𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
24 df-rex 3068 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤𝑥 ↔ ∃𝑥(𝑥𝐴𝑤𝑥))
2524imbi1i 349 . . . . . . . . . . 11 ((∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥(𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2623, 25bitr4i 278 . . . . . . . . . 10 (∀𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2726albii 1815 . . . . . . . . 9 (∀𝑤𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2822, 27bitri 275 . . . . . . . 8 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
29 df-ral 3059 . . . . . . . 8 (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) ↔ ∀𝑤(𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3021, 28, 293imtr4i 292 . . . . . . 7 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3117, 30sylbir 235 . . . . . 6 (∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3215, 31sylbi 217 . . . . 5 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3311, 32syl 17 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3433adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
35 intssuni 4974 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
36 ssralv 4063 . . . . 5 ( 𝐴 𝐴 → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3735, 36syl 17 . . . 4 (𝐴 ≠ ∅ → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3837adantr 480 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3934, 38mpd 15 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
40 dfon2lem6 35769 . . 3 ((Tr 𝐴 ∧ ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴))
41 intex 5349 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
42 dfon2lem3 35766 . . . . . . . . . . 11 ( 𝐴 ∈ V → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡)))
4341, 42sylbi 217 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡)))
4443imp 406 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡))
4544simprd 495 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ∀𝑡 𝐴 ¬ 𝑡𝑡)
46 untelirr 35687 . . . . . . . 8 (∀𝑡 𝐴 ¬ 𝑡𝑡 → ¬ 𝐴 𝐴)
4745, 46syl 17 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ¬ 𝐴 𝐴)
4847adantlr 715 . . . . . 6 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ¬ 𝐴 𝐴)
49 risset 3230 . . . . . . . . . 10 ( 𝐴𝐴 ↔ ∃𝑡𝐴 𝑡 = 𝐴)
5049notbii 320 . . . . . . . . 9 𝐴𝐴 ↔ ¬ ∃𝑡𝐴 𝑡 = 𝐴)
51 ralnex 3069 . . . . . . . . 9 (∀𝑡𝐴 ¬ 𝑡 = 𝐴 ↔ ¬ ∃𝑡𝐴 𝑡 = 𝐴)
5250, 51bitr4i 278 . . . . . . . 8 𝐴𝐴 ↔ ∀𝑡𝐴 ¬ 𝑡 = 𝐴)
53 eqcom 2741 . . . . . . . . . . . 12 (𝑡 = 𝐴 𝐴 = 𝑡)
5453notbii 320 . . . . . . . . . . 11 𝑡 = 𝐴 ↔ ¬ 𝐴 = 𝑡)
5544simpld 494 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → Tr 𝐴)
5655adantlr 715 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → Tr 𝐴)
57 psseq2 4100 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑡 → (𝑦𝑥𝑦𝑡))
5857anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑦𝑥 ∧ Tr 𝑦) ↔ (𝑦𝑡 ∧ Tr 𝑦)))
59 elequ2 2120 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝑦𝑥𝑦𝑡))
6058, 59imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6160albidv 1917 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6261rspccv 3618 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑡𝐴 → ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6362adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
64 intss1 4967 . . . . . . . . . . . . . . . 16 (𝑡𝐴 𝐴𝑡)
65 dfpss2 4097 . . . . . . . . . . . . . . . . . . . 20 ( 𝐴𝑡 ↔ ( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡))
66 psseq1 4099 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝐴 → (𝑦𝑡 𝐴𝑡))
67 treq 5272 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝐴 → (Tr 𝑦 ↔ Tr 𝐴))
6866, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝐴 → ((𝑦𝑡 ∧ Tr 𝑦) ↔ ( 𝐴𝑡 ∧ Tr 𝐴)))
69 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝐴 → (𝑦𝑡 𝐴𝑡))
7068, 69imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝐴 → (((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) ↔ (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7170spcgv 3595 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝐴 ∈ V → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7241, 71sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7372imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡))
7473expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → ( 𝐴𝑡 → (Tr 𝐴 𝐴𝑡)))
7565, 74biimtrrid 243 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → (( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡) → (Tr 𝐴 𝐴𝑡)))
7675exp4b 430 . . . . . . . . . . . . . . . . . 18 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → ( 𝐴𝑡 → (¬ 𝐴 = 𝑡 → (Tr 𝐴 𝐴𝑡)))))
7776com45 97 . . . . . . . . . . . . . . . . 17 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → ( 𝐴𝑡 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
7877com23 86 . . . . . . . . . . . . . . . 16 (𝐴 ≠ ∅ → ( 𝐴𝑡 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
7964, 78syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ≠ ∅ → (𝑡𝐴 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
8163, 80mpdd 43 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡))))
8281adantr 480 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡))))
8356, 82mpid 44 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))
8454, 83syl7bi 255 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (¬ 𝑡 = 𝐴 𝐴𝑡)))
8584ralrimiv 3142 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ∀𝑡𝐴𝑡 = 𝐴 𝐴𝑡))
86 ralim 3083 . . . . . . . . 9 (∀𝑡𝐴𝑡 = 𝐴 𝐴𝑡) → (∀𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀𝑡𝐴 𝐴𝑡))
8785, 86syl 17 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (∀𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀𝑡𝐴 𝐴𝑡))
8852, 87biimtrid 242 . . . . . . 7 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (¬ 𝐴𝐴 → ∀𝑡𝐴 𝐴𝑡))
89 elintg 4958 . . . . . . . . 9 ( 𝐴 ∈ V → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9041, 89sylbi 217 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9190ad2antrr 726 . . . . . . 7 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9288, 91sylibrd 259 . . . . . 6 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (¬ 𝐴𝐴 𝐴 𝐴))
9348, 92mt3d 148 . . . . 5 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → 𝐴𝐴)
9493ex 412 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → 𝐴𝐴))
9594ancld 550 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴)))
9640, 95syl5 34 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ((Tr 𝐴 ∧ ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴)))
978, 39, 96mp2and 699 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1534   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  wss 3962  wpss 3963  c0 4338   cuni 4911   cint 4950  Tr wtr 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-pw 4606  df-sn 4631  df-pr 4633  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-tr 5265  df-suc 6391
This theorem is referenced by:  dfon2lem9  35772
  Copyright terms: Public domain W3C validator