Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untuni Structured version   Visualization version   GIF version

Theorem untuni 33650
Description: The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
untuni (∀𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀𝑦𝐴𝑥𝑦 ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem untuni
StepHypRef Expression
1 r19.23v 3208 . . . 4 (∀𝑦𝐴 (𝑥𝑦 → ¬ 𝑥𝑥) ↔ (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥𝑥))
21albii 1822 . . 3 (∀𝑥𝑦𝐴 (𝑥𝑦 → ¬ 𝑥𝑥) ↔ ∀𝑥(∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥𝑥))
3 ralcom4 3164 . . 3 (∀𝑦𝐴𝑥(𝑥𝑦 → ¬ 𝑥𝑥) ↔ ∀𝑥𝑦𝐴 (𝑥𝑦 → ¬ 𝑥𝑥))
4 eluni2 4843 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
54imbi1i 350 . . . 4 ((𝑥 𝐴 → ¬ 𝑥𝑥) ↔ (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥𝑥))
65albii 1822 . . 3 (∀𝑥(𝑥 𝐴 → ¬ 𝑥𝑥) ↔ ∀𝑥(∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥𝑥))
72, 3, 63bitr4ri 304 . 2 (∀𝑥(𝑥 𝐴 → ¬ 𝑥𝑥) ↔ ∀𝑦𝐴𝑥(𝑥𝑦 → ¬ 𝑥𝑥))
8 df-ral 3069 . 2 (∀𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀𝑥(𝑥 𝐴 → ¬ 𝑥𝑥))
9 df-ral 3069 . . 3 (∀𝑥𝑦 ¬ 𝑥𝑥 ↔ ∀𝑥(𝑥𝑦 → ¬ 𝑥𝑥))
109ralbii 3092 . 2 (∀𝑦𝐴𝑥𝑦 ¬ 𝑥𝑥 ↔ ∀𝑦𝐴𝑥(𝑥𝑦 → ¬ 𝑥𝑥))
117, 8, 103bitr4i 303 1 (∀𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀𝑦𝐴𝑥𝑦 ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wcel 2106  wral 3064  wrex 3065   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-uni 4840
This theorem is referenced by:  untangtr  33655  dfon2lem3  33761  dfon2lem7  33765
  Copyright terms: Public domain W3C validator