Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > untuni | Structured version Visualization version GIF version |
Description: The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
Ref | Expression |
---|---|
untuni | ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.23v 3207 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) | |
2 | 1 | albii 1823 | . . 3 ⊢ (∀𝑥∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
3 | ralcom4 3161 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑥∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) | |
4 | eluni2 4840 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
5 | 4 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
6 | 5 | albii 1823 | . . 3 ⊢ (∀𝑥(𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
7 | 2, 3, 6 | 3bitr4ri 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
8 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥)) | |
9 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) | |
10 | 9 | ralbii 3090 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
11 | 7, 8, 10 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-uni 4837 |
This theorem is referenced by: untangtr 33555 dfon2lem3 33667 dfon2lem7 33671 |
Copyright terms: Public domain | W3C validator |