| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > untuni | Structured version Visualization version GIF version | ||
| Description: The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
| Ref | Expression |
|---|---|
| untuni | ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.23v 3162 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
| 3 | ralcom4 3264 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑥∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) | |
| 4 | eluni2 4877 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 5 | 4 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
| 7 | 2, 3, 6 | 3bitr4ri 304 | . 2 ⊢ (∀𝑥(𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
| 8 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥)) | |
| 9 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) | |
| 10 | 9 | ralbii 3076 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
| 11 | 7, 8, 10 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∪ cuni 4873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-uni 4874 |
| This theorem is referenced by: untangtr 35696 dfon2lem3 35768 dfon2lem7 35772 |
| Copyright terms: Public domain | W3C validator |