Step | Hyp | Ref
| Expression |
1 | | 1wlkd.p |
. . . . 5
β’ π = β¨βππββ© |
2 | | 1wlkd.f |
. . . . 5
β’ πΉ = β¨βπ½ββ© |
3 | | 1wlkd.x |
. . . . 5
β’ (π β π β π) |
4 | | 1wlkd.y |
. . . . 5
β’ (π β π β π) |
5 | | 1wlkd.l |
. . . . 5
β’ ((π β§ π = π) β (πΌβπ½) = {π}) |
6 | | 1wlkd.j |
. . . . 5
β’ ((π β§ π β π) β {π, π} β (πΌβπ½)) |
7 | | 1wlkd.v |
. . . . 5
β’ π = (VtxβπΊ) |
8 | | 1wlkd.i |
. . . . 5
β’ πΌ = (iEdgβπΊ) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1wlkd 29661 |
. . . 4
β’ (π β πΉ(WalksβπΊ)π) |
10 | 1 | fveq1i 6891 |
. . . . . 6
β’ (πβ0) = (β¨βππββ©β0) |
11 | | s2fv0 14842 |
. . . . . 6
β’ (π β π β (β¨βππββ©β0) = π) |
12 | 10, 11 | eqtrid 2782 |
. . . . 5
β’ (π β π β (πβ0) = π) |
13 | 3, 12 | syl 17 |
. . . 4
β’ (π β (πβ0) = π) |
14 | 2 | fveq2i 6893 |
. . . . . . 7
β’
(β―βπΉ) =
(β―ββ¨βπ½ββ©) |
15 | | s1len 14560 |
. . . . . . 7
β’
(β―ββ¨βπ½ββ©) = 1 |
16 | 14, 15 | eqtri 2758 |
. . . . . 6
β’
(β―βπΉ) =
1 |
17 | 1, 16 | fveq12i 6896 |
. . . . 5
β’ (πβ(β―βπΉ)) = (β¨βππββ©β1) |
18 | | s2fv1 14843 |
. . . . . 6
β’ (π β π β (β¨βππββ©β1) = π) |
19 | 4, 18 | syl 17 |
. . . . 5
β’ (π β (β¨βππββ©β1) = π) |
20 | 17, 19 | eqtrid 2782 |
. . . 4
β’ (π β (πβ(β―βπΉ)) = π) |
21 | | wlkv 29136 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) |
22 | | 3simpc 1148 |
. . . . . . 7
β’ ((πΊ β V β§ πΉ β V β§ π β V) β (πΉ β V β§ π β V)) |
23 | 9, 21, 22 | 3syl 18 |
. . . . . 6
β’ (π β (πΉ β V β§ π β V)) |
24 | 3, 4, 23 | jca31 513 |
. . . . 5
β’ (π β ((π β π β§ π β π) β§ (πΉ β V β§ π β V))) |
25 | 7 | iswlkon 29181 |
. . . . 5
β’ (((π β π β§ π β π) β§ (πΉ β V β§ π β V)) β (πΉ(π(WalksOnβπΊ)π)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π β§ (πβ(β―βπΉ)) = π))) |
26 | 24, 25 | syl 17 |
. . . 4
β’ (π β (πΉ(π(WalksOnβπΊ)π)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π β§ (πβ(β―βπΉ)) = π))) |
27 | 9, 13, 20, 26 | mpbir3and 1340 |
. . 3
β’ (π β πΉ(π(WalksOnβπΊ)π)π) |
28 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 29662 |
. . 3
β’ (π β πΉ(TrailsβπΊ)π) |
29 | 7 | istrlson 29231 |
. . . 4
β’ (((π β π β§ π β π) β§ (πΉ β V β§ π β V)) β (πΉ(π(TrailsOnβπΊ)π)π β (πΉ(π(WalksOnβπΊ)π)π β§ πΉ(TrailsβπΊ)π))) |
30 | 24, 29 | syl 17 |
. . 3
β’ (π β (πΉ(π(TrailsOnβπΊ)π)π β (πΉ(π(WalksOnβπΊ)π)π β§ πΉ(TrailsβπΊ)π))) |
31 | 27, 28, 30 | mpbir2and 709 |
. 2
β’ (π β πΉ(π(TrailsOnβπΊ)π)π) |
32 | 1, 2, 3, 4, 5, 6, 7, 8 | 1pthd 29663 |
. 2
β’ (π β πΉ(PathsβπΊ)π) |
33 | 3 | adantl 480 |
. . . . . . 7
β’ (((πΉ β V β§ π β V) β§ π) β π β π) |
34 | 4 | adantl 480 |
. . . . . . 7
β’ (((πΉ β V β§ π β V) β§ π) β π β π) |
35 | | simpl 481 |
. . . . . . 7
β’ (((πΉ β V β§ π β V) β§ π) β (πΉ β V β§ π β V)) |
36 | 33, 34, 35 | jca31 513 |
. . . . . 6
β’ (((πΉ β V β§ π β V) β§ π) β ((π β π β§ π β π) β§ (πΉ β V β§ π β V))) |
37 | 36 | ex 411 |
. . . . 5
β’ ((πΉ β V β§ π β V) β (π β ((π β π β§ π β π) β§ (πΉ β V β§ π β V)))) |
38 | 21, 22, 37 | 3syl 18 |
. . . 4
β’ (πΉ(WalksβπΊ)π β (π β ((π β π β§ π β π) β§ (πΉ β V β§ π β V)))) |
39 | 9, 38 | mpcom 38 |
. . 3
β’ (π β ((π β π β§ π β π) β§ (πΉ β V β§ π β V))) |
40 | 7 | ispthson 29266 |
. . 3
β’ (((π β π β§ π β π) β§ (πΉ β V β§ π β V)) β (πΉ(π(PathsOnβπΊ)π)π β (πΉ(π(TrailsOnβπΊ)π)π β§ πΉ(PathsβπΊ)π))) |
41 | 39, 40 | syl 17 |
. 2
β’ (π β (πΉ(π(PathsOnβπΊ)π)π β (πΉ(π(TrailsOnβπΊ)π)π β§ πΉ(PathsβπΊ)π))) |
42 | 31, 32, 41 | mpbir2and 709 |
1
β’ (π β πΉ(π(PathsOnβπΊ)π)π) |