Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pthond | Structured version Visualization version GIF version |
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
1pthond | ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
2 | 1wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽”〉 | |
3 | 1wlkd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | 1wlkd.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | 1wlkd.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
6 | 1wlkd.j | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
7 | 1wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 1wlkd.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1wlkd 28514 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
10 | 1 | fveq1i 6784 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝑋𝑌”〉‘0) |
11 | s2fv0 14609 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
12 | 10, 11 | eqtrid 2791 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑃‘0) = 𝑋) |
13 | 3, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = 𝑋) |
14 | 2 | fveq2i 6786 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘〈“𝐽”〉) |
15 | s1len 14320 | . . . . . . 7 ⊢ (♯‘〈“𝐽”〉) = 1 | |
16 | 14, 15 | eqtri 2767 | . . . . . 6 ⊢ (♯‘𝐹) = 1 |
17 | 1, 16 | fveq12i 6789 | . . . . 5 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝑋𝑌”〉‘1) |
18 | s2fv1 14610 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈“𝑋𝑌”〉‘1) = 𝑌) |
20 | 17, 19 | eqtrid 2791 | . . . 4 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝑌) |
21 | wlkv 27988 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
22 | 3simpc 1149 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
23 | 9, 21, 22 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
24 | 3, 4, 23 | jca31 515 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
25 | 7 | iswlkon 28034 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) |
26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) |
27 | 9, 13, 20, 26 | mpbir3and 1341 | . . 3 ⊢ (𝜑 → 𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃) |
28 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 28515 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
29 | 7 | istrlson 28084 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
30 | 24, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
31 | 27, 28, 30 | mpbir2and 710 | . 2 ⊢ (𝜑 → 𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃) |
32 | 1, 2, 3, 4, 5, 6, 7, 8 | 1pthd 28516 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
33 | 3 | adantl 482 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑋 ∈ 𝑉) |
34 | 4 | adantl 482 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑌 ∈ 𝑉) |
35 | simpl 483 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
36 | 33, 34, 35 | jca31 515 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
37 | 36 | ex 413 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
38 | 21, 22, 37 | 3syl 18 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
39 | 9, 38 | mpcom 38 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
40 | 7 | ispthson 28119 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
42 | 31, 32, 41 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 Vcvv 3433 ⊆ wss 3888 {csn 4562 {cpr 4564 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 0cc0 10880 1c1 10881 ♯chash 14053 〈“cs1 14309 〈“cs2 14563 Vtxcvtx 27375 iEdgciedg 27376 Walkscwlks 27972 WalksOncwlkson 27973 Trailsctrls 28067 TrailsOnctrlson 28068 Pathscpths 28089 PathsOncpthson 28091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-pm 8627 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 df-hash 14054 df-word 14227 df-concat 14283 df-s1 14310 df-s2 14570 df-wlks 27975 df-wlkson 27976 df-trls 28069 df-trlson 28070 df-pths 28093 df-pthson 28095 |
This theorem is referenced by: upgr1pthond 28523 lppthon 28524 1pthon2v 28526 |
Copyright terms: Public domain | W3C validator |