| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1pthond | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
| 1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
| 1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
| 1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
| 1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| 1pthond | ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
| 2 | 1wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽”〉 | |
| 3 | 1wlkd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | 1wlkd.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | 1wlkd.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
| 6 | 1wlkd.j | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
| 7 | 1wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 1wlkd.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1wlkd 30070 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 10 | 1 | fveq1i 6859 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝑋𝑌”〉‘0) |
| 11 | s2fv0 14853 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
| 12 | 10, 11 | eqtrid 2776 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑃‘0) = 𝑋) |
| 13 | 3, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = 𝑋) |
| 14 | 2 | fveq2i 6861 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘〈“𝐽”〉) |
| 15 | s1len 14571 | . . . . . . 7 ⊢ (♯‘〈“𝐽”〉) = 1 | |
| 16 | 14, 15 | eqtri 2752 | . . . . . 6 ⊢ (♯‘𝐹) = 1 |
| 17 | 1, 16 | fveq12i 6864 | . . . . 5 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝑋𝑌”〉‘1) |
| 18 | s2fv1 14854 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈“𝑋𝑌”〉‘1) = 𝑌) |
| 20 | 17, 19 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝑌) |
| 21 | wlkv 29540 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 22 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 23 | 9, 21, 22 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 24 | 3, 4, 23 | jca31 514 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 25 | 7 | iswlkon 29585 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) |
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) |
| 27 | 9, 13, 20, 26 | mpbir3and 1343 | . . 3 ⊢ (𝜑 → 𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃) |
| 28 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 30071 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 29 | 7 | istrlson 29635 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
| 30 | 24, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
| 31 | 27, 28, 30 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃) |
| 32 | 1, 2, 3, 4, 5, 6, 7, 8 | 1pthd 30072 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 33 | 3 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑋 ∈ 𝑉) |
| 34 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑌 ∈ 𝑉) |
| 35 | simpl 482 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 36 | 33, 34, 35 | jca31 514 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 37 | 36 | ex 412 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
| 38 | 21, 22, 37 | 3syl 18 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
| 39 | 9, 38 | mpcom 38 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 40 | 7 | ispthson 29672 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
| 42 | 31, 32, 41 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 {csn 4589 {cpr 4591 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 ♯chash 14295 〈“cs1 14560 〈“cs2 14807 Vtxcvtx 28923 iEdgciedg 28924 Walkscwlks 29524 WalksOncwlkson 29525 Trailsctrls 29618 TrailsOnctrlson 29619 Pathscpths 29640 PathsOncpthson 29642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-wlks 29527 df-wlkson 29528 df-trls 29620 df-trlson 29621 df-pths 29644 df-pthson 29646 |
| This theorem is referenced by: upgr1pthond 30079 lppthon 30080 1pthon2v 30082 |
| Copyright terms: Public domain | W3C validator |