|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 1pthond | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| 1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 | 
| 1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 | 
| 1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | 
| 1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | 
| 1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| 1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| 1pthond | ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
| 2 | 1wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽”〉 | |
| 3 | 1wlkd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | 1wlkd.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | 1wlkd.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
| 6 | 1wlkd.j | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
| 7 | 1wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 1wlkd.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1wlkd 30160 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | 
| 10 | 1 | fveq1i 6907 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝑋𝑌”〉‘0) | 
| 11 | s2fv0 14926 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
| 12 | 10, 11 | eqtrid 2789 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑃‘0) = 𝑋) | 
| 13 | 3, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = 𝑋) | 
| 14 | 2 | fveq2i 6909 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘〈“𝐽”〉) | 
| 15 | s1len 14644 | . . . . . . 7 ⊢ (♯‘〈“𝐽”〉) = 1 | |
| 16 | 14, 15 | eqtri 2765 | . . . . . 6 ⊢ (♯‘𝐹) = 1 | 
| 17 | 1, 16 | fveq12i 6912 | . . . . 5 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝑋𝑌”〉‘1) | 
| 18 | s2fv1 14927 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈“𝑋𝑌”〉‘1) = 𝑌) | 
| 20 | 17, 19 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝑌) | 
| 21 | wlkv 29630 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 22 | 3simpc 1151 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 23 | 9, 21, 22 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | 
| 24 | 3, 4, 23 | jca31 514 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | 
| 25 | 7 | iswlkon 29675 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) | 
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) | 
| 27 | 9, 13, 20, 26 | mpbir3and 1343 | . . 3 ⊢ (𝜑 → 𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃) | 
| 28 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 30161 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | 
| 29 | 7 | istrlson 29725 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | 
| 30 | 24, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | 
| 31 | 27, 28, 30 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃) | 
| 32 | 1, 2, 3, 4, 5, 6, 7, 8 | 1pthd 30162 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | 
| 33 | 3 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑋 ∈ 𝑉) | 
| 34 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑌 ∈ 𝑉) | 
| 35 | simpl 482 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 36 | 33, 34, 35 | jca31 514 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | 
| 37 | 36 | ex 412 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) | 
| 38 | 21, 22, 37 | 3syl 18 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) | 
| 39 | 9, 38 | mpcom 38 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | 
| 40 | 7 | ispthson 29762 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | 
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | 
| 42 | 31, 32, 41 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ⊆ wss 3951 {csn 4626 {cpr 4628 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 ♯chash 14369 〈“cs1 14633 〈“cs2 14880 Vtxcvtx 29013 iEdgciedg 29014 Walkscwlks 29614 WalksOncwlkson 29615 Trailsctrls 29708 TrailsOnctrlson 29709 Pathscpths 29730 PathsOncpthson 29732 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-wlks 29617 df-wlkson 29618 df-trls 29710 df-trlson 29711 df-pths 29734 df-pthson 29736 | 
| This theorem is referenced by: upgr1pthond 30169 lppthon 30170 1pthon2v 30172 | 
| Copyright terms: Public domain | W3C validator |