|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 1pthond | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| 1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 | 
| 1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 | 
| 1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | 
| 1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | 
| 1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| 1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| 1pthond | ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
| 2 | 1wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽”〉 | |
| 3 | 1wlkd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | 1wlkd.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | 1wlkd.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
| 6 | 1wlkd.j | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
| 7 | 1wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 1wlkd.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1wlkd 30161 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | 
| 10 | 1 | fveq1i 6906 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝑋𝑌”〉‘0) | 
| 11 | s2fv0 14927 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
| 12 | 10, 11 | eqtrid 2788 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑃‘0) = 𝑋) | 
| 13 | 3, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑃‘0) = 𝑋) | 
| 14 | 2 | fveq2i 6908 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘〈“𝐽”〉) | 
| 15 | s1len 14645 | . . . . . . 7 ⊢ (♯‘〈“𝐽”〉) = 1 | |
| 16 | 14, 15 | eqtri 2764 | . . . . . 6 ⊢ (♯‘𝐹) = 1 | 
| 17 | 1, 16 | fveq12i 6911 | . . . . 5 ⊢ (𝑃‘(♯‘𝐹)) = (〈“𝑋𝑌”〉‘1) | 
| 18 | s2fv1 14928 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈“𝑋𝑌”〉‘1) = 𝑌) | 
| 20 | 17, 19 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = 𝑌) | 
| 21 | wlkv 29631 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 22 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 23 | 9, 21, 22 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | 
| 24 | 3, 4, 23 | jca31 514 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | 
| 25 | 7 | iswlkon 29676 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) | 
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(♯‘𝐹)) = 𝑌))) | 
| 27 | 9, 13, 20, 26 | mpbir3and 1342 | . . 3 ⊢ (𝜑 → 𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃) | 
| 28 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 30162 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | 
| 29 | 7 | istrlson 29726 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | 
| 30 | 24, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | 
| 31 | 27, 28, 30 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃) | 
| 32 | 1, 2, 3, 4, 5, 6, 7, 8 | 1pthd 30163 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | 
| 33 | 3 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑋 ∈ 𝑉) | 
| 34 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑌 ∈ 𝑉) | 
| 35 | simpl 482 | . . . . . . 7 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 36 | 33, 34, 35 | jca31 514 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | 
| 37 | 36 | ex 412 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) | 
| 38 | 21, 22, 37 | 3syl 18 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) | 
| 39 | 9, 38 | mpcom 38 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | 
| 40 | 7 | ispthson 29763 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | 
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | 
| 42 | 31, 32, 41 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ⊆ wss 3950 {csn 4625 {cpr 4627 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 ♯chash 14370 〈“cs1 14634 〈“cs2 14881 Vtxcvtx 29014 iEdgciedg 29015 Walkscwlks 29615 WalksOncwlkson 29616 Trailsctrls 29709 TrailsOnctrlson 29710 Pathscpths 29731 PathsOncpthson 29733 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-s2 14888 df-wlks 29618 df-wlkson 29619 df-trls 29711 df-trlson 29712 df-pths 29735 df-pthson 29737 | 
| This theorem is referenced by: upgr1pthond 30170 lppthon 30171 1pthon2v 30173 | 
| Copyright terms: Public domain | W3C validator |