![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvvop | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvop.1 | ⊢ 𝑊 = (1st ‘𝑈) |
nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvvop | ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcrel 30589 | . . 3 ⊢ Rel CVecOLD | |
2 | nvss 30622 | . . . . 5 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
3 | nvvop.1 | . . . . . . . 8 ⊢ 𝑊 = (1st ‘𝑈) | |
4 | eqid 2735 | . . . . . . . 8 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | 3, 4 | nvop2 30637 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, (normCV‘𝑈)〉) |
6 | 5 | eleq1d 2824 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec)) |
7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec) |
8 | 2, 7 | sselid 3993 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V)) |
9 | opelxp1 5731 | . . . 4 ⊢ (〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
11 | 1st2nd 8063 | . . 3 ⊢ ((Rel CVecOLD ∧ 𝑊 ∈ CVecOLD) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
12 | 1, 10, 11 | sylancr 587 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
13 | nvvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | 13 | vafval 30632 | . . . 4 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
15 | 3 | fveq2i 6910 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘(1st ‘𝑈)) |
16 | 14, 15 | eqtr4i 2766 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) |
17 | nvvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
18 | 17 | smfval 30634 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
19 | 3 | fveq2i 6910 | . . . 4 ⊢ (2nd ‘𝑊) = (2nd ‘(1st ‘𝑈)) |
20 | 18, 19 | eqtr4i 2766 | . . 3 ⊢ 𝑆 = (2nd ‘𝑊) |
21 | 16, 20 | opeq12i 4883 | . 2 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 |
22 | 12, 21 | eqtr4di 2793 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 × cxp 5687 Rel wrel 5694 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 CVecOLDcvc 30587 NrmCVeccnv 30613 +𝑣 cpv 30614 ·𝑠OLD cns 30616 normCVcnmcv 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-oprab 7435 df-1st 8013 df-2nd 8014 df-vc 30588 df-nv 30621 df-va 30624 df-sm 30626 df-nmcv 30629 |
This theorem is referenced by: nvi 30643 nvvc 30644 nvop 30705 |
Copyright terms: Public domain | W3C validator |