MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvop Structured version   Visualization version   GIF version

Theorem nvvop 28872
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvvop.1 𝑊 = (1st𝑈)
nvvop.2 𝐺 = ( +𝑣𝑈)
nvvop.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvvop (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)

Proof of Theorem nvvop
StepHypRef Expression
1 vcrel 28823 . . 3 Rel CVecOLD
2 nvss 28856 . . . . 5 NrmCVec ⊆ (CVecOLD × V)
3 nvvop.1 . . . . . . . 8 𝑊 = (1st𝑈)
4 eqid 2738 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
53, 4nvop2 28871 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, (normCV𝑈)⟩)
65eleq1d 2823 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec))
76ibi 266 . . . . 5 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec)
82, 7sselid 3915 . . . 4 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V))
9 opelxp1 5621 . . . 4 (⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD)
108, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
11 1st2nd 7853 . . 3 ((Rel CVecOLD𝑊 ∈ CVecOLD) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
121, 10, 11sylancr 586 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
13 nvvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
1413vafval 28866 . . . 4 𝐺 = (1st ‘(1st𝑈))
153fveq2i 6759 . . . 4 (1st𝑊) = (1st ‘(1st𝑈))
1614, 15eqtr4i 2769 . . 3 𝐺 = (1st𝑊)
17 nvvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
1817smfval 28868 . . . 4 𝑆 = (2nd ‘(1st𝑈))
193fveq2i 6759 . . . 4 (2nd𝑊) = (2nd ‘(1st𝑈))
2018, 19eqtr4i 2769 . . 3 𝑆 = (2nd𝑊)
2116, 20opeq12i 4806 . 2 𝐺, 𝑆⟩ = ⟨(1st𝑊), (2nd𝑊)⟩
2212, 21eqtr4di 2797 1 (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  Rel wrel 5585  cfv 6418  1st c1st 7802  2nd c2nd 7803  CVecOLDcvc 28821  NrmCVeccnv 28847   +𝑣 cpv 28848   ·𝑠OLD cns 28850  normCVcnmcv 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-oprab 7259  df-1st 7804  df-2nd 7805  df-vc 28822  df-nv 28855  df-va 28858  df-sm 28860  df-nmcv 28863
This theorem is referenced by:  nvi  28877  nvvc  28878  nvop  28939
  Copyright terms: Public domain W3C validator