![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvvop | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvop.1 | โข ๐ = (1st โ๐) |
nvvop.2 | โข ๐บ = ( +๐ฃ โ๐) |
nvvop.4 | โข ๐ = ( ยท๐ OLD โ๐) |
Ref | Expression |
---|---|
nvvop | โข (๐ โ NrmCVec โ ๐ = โจ๐บ, ๐โฉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcrel 30078 | . . 3 โข Rel CVecOLD | |
2 | nvss 30111 | . . . . 5 โข NrmCVec โ (CVecOLD ร V) | |
3 | nvvop.1 | . . . . . . . 8 โข ๐ = (1st โ๐) | |
4 | eqid 2730 | . . . . . . . 8 โข (normCVโ๐) = (normCVโ๐) | |
5 | 3, 4 | nvop2 30126 | . . . . . . 7 โข (๐ โ NrmCVec โ ๐ = โจ๐, (normCVโ๐)โฉ) |
6 | 5 | eleq1d 2816 | . . . . . 6 โข (๐ โ NrmCVec โ (๐ โ NrmCVec โ โจ๐, (normCVโ๐)โฉ โ NrmCVec)) |
7 | 6 | ibi 266 | . . . . 5 โข (๐ โ NrmCVec โ โจ๐, (normCVโ๐)โฉ โ NrmCVec) |
8 | 2, 7 | sselid 3981 | . . . 4 โข (๐ โ NrmCVec โ โจ๐, (normCVโ๐)โฉ โ (CVecOLD ร V)) |
9 | opelxp1 5719 | . . . 4 โข (โจ๐, (normCVโ๐)โฉ โ (CVecOLD ร V) โ ๐ โ CVecOLD) | |
10 | 8, 9 | syl 17 | . . 3 โข (๐ โ NrmCVec โ ๐ โ CVecOLD) |
11 | 1st2nd 8029 | . . 3 โข ((Rel CVecOLD โง ๐ โ CVecOLD) โ ๐ = โจ(1st โ๐), (2nd โ๐)โฉ) | |
12 | 1, 10, 11 | sylancr 585 | . 2 โข (๐ โ NrmCVec โ ๐ = โจ(1st โ๐), (2nd โ๐)โฉ) |
13 | nvvop.2 | . . . . 5 โข ๐บ = ( +๐ฃ โ๐) | |
14 | 13 | vafval 30121 | . . . 4 โข ๐บ = (1st โ(1st โ๐)) |
15 | 3 | fveq2i 6895 | . . . 4 โข (1st โ๐) = (1st โ(1st โ๐)) |
16 | 14, 15 | eqtr4i 2761 | . . 3 โข ๐บ = (1st โ๐) |
17 | nvvop.4 | . . . . 5 โข ๐ = ( ยท๐ OLD โ๐) | |
18 | 17 | smfval 30123 | . . . 4 โข ๐ = (2nd โ(1st โ๐)) |
19 | 3 | fveq2i 6895 | . . . 4 โข (2nd โ๐) = (2nd โ(1st โ๐)) |
20 | 18, 19 | eqtr4i 2761 | . . 3 โข ๐ = (2nd โ๐) |
21 | 16, 20 | opeq12i 4879 | . 2 โข โจ๐บ, ๐โฉ = โจ(1st โ๐), (2nd โ๐)โฉ |
22 | 12, 21 | eqtr4di 2788 | 1 โข (๐ โ NrmCVec โ ๐ = โจ๐บ, ๐โฉ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1539 โ wcel 2104 Vcvv 3472 โจcop 4635 ร cxp 5675 Rel wrel 5682 โcfv 6544 1st c1st 7977 2nd c2nd 7978 CVecOLDcvc 30076 NrmCVeccnv 30102 +๐ฃ cpv 30103 ยท๐ OLD cns 30105 normCVcnmcv 30108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-oprab 7417 df-1st 7979 df-2nd 7980 df-vc 30077 df-nv 30110 df-va 30113 df-sm 30115 df-nmcv 30118 |
This theorem is referenced by: nvi 30132 nvvc 30133 nvop 30194 |
Copyright terms: Public domain | W3C validator |