MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvop Structured version   Visualization version   GIF version

Theorem nvvop 28690
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvvop.1 𝑊 = (1st𝑈)
nvvop.2 𝐺 = ( +𝑣𝑈)
nvvop.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvvop (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)

Proof of Theorem nvvop
StepHypRef Expression
1 vcrel 28641 . . 3 Rel CVecOLD
2 nvss 28674 . . . . 5 NrmCVec ⊆ (CVecOLD × V)
3 nvvop.1 . . . . . . . 8 𝑊 = (1st𝑈)
4 eqid 2737 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
53, 4nvop2 28689 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, (normCV𝑈)⟩)
65eleq1d 2822 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec))
76ibi 270 . . . . 5 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec)
82, 7sseldi 3899 . . . 4 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V))
9 opelxp1 5592 . . . 4 (⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD)
108, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
11 1st2nd 7810 . . 3 ((Rel CVecOLD𝑊 ∈ CVecOLD) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
121, 10, 11sylancr 590 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
13 nvvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
1413vafval 28684 . . . 4 𝐺 = (1st ‘(1st𝑈))
153fveq2i 6720 . . . 4 (1st𝑊) = (1st ‘(1st𝑈))
1614, 15eqtr4i 2768 . . 3 𝐺 = (1st𝑊)
17 nvvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
1817smfval 28686 . . . 4 𝑆 = (2nd ‘(1st𝑈))
193fveq2i 6720 . . . 4 (2nd𝑊) = (2nd ‘(1st𝑈))
2018, 19eqtr4i 2768 . . 3 𝑆 = (2nd𝑊)
2116, 20opeq12i 4789 . 2 𝐺, 𝑆⟩ = ⟨(1st𝑊), (2nd𝑊)⟩
2212, 21eqtr4di 2796 1 (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  Vcvv 3408  cop 4547   × cxp 5549  Rel wrel 5556  cfv 6380  1st c1st 7759  2nd c2nd 7760  CVecOLDcvc 28639  NrmCVeccnv 28665   +𝑣 cpv 28666   ·𝑠OLD cns 28668  normCVcnmcv 28671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fo 6386  df-fv 6388  df-oprab 7217  df-1st 7761  df-2nd 7762  df-vc 28640  df-nv 28673  df-va 28676  df-sm 28678  df-nmcv 28681
This theorem is referenced by:  nvi  28695  nvvc  28696  nvop  28757
  Copyright terms: Public domain W3C validator