| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvop | Structured version Visualization version GIF version | ||
| Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvop.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| nvvop | ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vcrel 30540 | . . 3 ⊢ Rel CVecOLD | |
| 2 | nvss 30573 | . . . . 5 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
| 3 | nvvop.1 | . . . . . . . 8 ⊢ 𝑊 = (1st ‘𝑈) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 5 | 3, 4 | nvop2 30588 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, (normCV‘𝑈)〉) |
| 6 | 5 | eleq1d 2816 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec)) |
| 7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec) |
| 8 | 2, 7 | sselid 3927 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V)) |
| 9 | opelxp1 5656 | . . . 4 ⊢ (〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| 11 | 1st2nd 7971 | . . 3 ⊢ ((Rel CVecOLD ∧ 𝑊 ∈ CVecOLD) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
| 12 | 1, 10, 11 | sylancr 587 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
| 13 | nvvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 14 | 13 | vafval 30583 | . . . 4 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| 15 | 3 | fveq2i 6825 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘(1st ‘𝑈)) |
| 16 | 14, 15 | eqtr4i 2757 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) |
| 17 | nvvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 18 | 17 | smfval 30585 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 19 | 3 | fveq2i 6825 | . . . 4 ⊢ (2nd ‘𝑊) = (2nd ‘(1st ‘𝑈)) |
| 20 | 18, 19 | eqtr4i 2757 | . . 3 ⊢ 𝑆 = (2nd ‘𝑊) |
| 21 | 16, 20 | opeq12i 4827 | . 2 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 |
| 22 | 12, 21 | eqtr4di 2784 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 Rel wrel 5619 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 CVecOLDcvc 30538 NrmCVeccnv 30564 +𝑣 cpv 30565 ·𝑠OLD cns 30567 normCVcnmcv 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30539 df-nv 30572 df-va 30575 df-sm 30577 df-nmcv 30580 |
| This theorem is referenced by: nvi 30594 nvvc 30595 nvop 30656 |
| Copyright terms: Public domain | W3C validator |