MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvop Structured version   Visualization version   GIF version

Theorem nvvop 30588
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvvop.1 𝑊 = (1st𝑈)
nvvop.2 𝐺 = ( +𝑣𝑈)
nvvop.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvvop (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)

Proof of Theorem nvvop
StepHypRef Expression
1 vcrel 30539 . . 3 Rel CVecOLD
2 nvss 30572 . . . . 5 NrmCVec ⊆ (CVecOLD × V)
3 nvvop.1 . . . . . . . 8 𝑊 = (1st𝑈)
4 eqid 2729 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
53, 4nvop2 30587 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, (normCV𝑈)⟩)
65eleq1d 2813 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec))
76ibi 267 . . . . 5 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec)
82, 7sselid 3941 . . . 4 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V))
9 opelxp1 5673 . . . 4 (⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD)
108, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
11 1st2nd 7997 . . 3 ((Rel CVecOLD𝑊 ∈ CVecOLD) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
121, 10, 11sylancr 587 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
13 nvvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
1413vafval 30582 . . . 4 𝐺 = (1st ‘(1st𝑈))
153fveq2i 6843 . . . 4 (1st𝑊) = (1st ‘(1st𝑈))
1614, 15eqtr4i 2755 . . 3 𝐺 = (1st𝑊)
17 nvvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
1817smfval 30584 . . . 4 𝑆 = (2nd ‘(1st𝑈))
193fveq2i 6843 . . . 4 (2nd𝑊) = (2nd ‘(1st𝑈))
2018, 19eqtr4i 2755 . . 3 𝑆 = (2nd𝑊)
2116, 20opeq12i 4838 . 2 𝐺, 𝑆⟩ = ⟨(1st𝑊), (2nd𝑊)⟩
2212, 21eqtr4di 2782 1 (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   × cxp 5629  Rel wrel 5636  cfv 6499  1st c1st 7945  2nd c2nd 7946  CVecOLDcvc 30537  NrmCVeccnv 30563   +𝑣 cpv 30564   ·𝑠OLD cns 30566  normCVcnmcv 30569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-oprab 7373  df-1st 7947  df-2nd 7948  df-vc 30538  df-nv 30571  df-va 30574  df-sm 30576  df-nmcv 30579
This theorem is referenced by:  nvi  30593  nvvc  30594  nvop  30655
  Copyright terms: Public domain W3C validator