| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvop | Structured version Visualization version GIF version | ||
| Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvop.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| nvvop | ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vcrel 30539 | . . 3 ⊢ Rel CVecOLD | |
| 2 | nvss 30572 | . . . . 5 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
| 3 | nvvop.1 | . . . . . . . 8 ⊢ 𝑊 = (1st ‘𝑈) | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 5 | 3, 4 | nvop2 30587 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, (normCV‘𝑈)〉) |
| 6 | 5 | eleq1d 2813 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec)) |
| 7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec) |
| 8 | 2, 7 | sselid 3941 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V)) |
| 9 | opelxp1 5673 | . . . 4 ⊢ (〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| 11 | 1st2nd 7997 | . . 3 ⊢ ((Rel CVecOLD ∧ 𝑊 ∈ CVecOLD) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
| 12 | 1, 10, 11 | sylancr 587 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
| 13 | nvvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 14 | 13 | vafval 30582 | . . . 4 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| 15 | 3 | fveq2i 6843 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘(1st ‘𝑈)) |
| 16 | 14, 15 | eqtr4i 2755 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) |
| 17 | nvvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 18 | 17 | smfval 30584 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 19 | 3 | fveq2i 6843 | . . . 4 ⊢ (2nd ‘𝑊) = (2nd ‘(1st ‘𝑈)) |
| 20 | 18, 19 | eqtr4i 2755 | . . 3 ⊢ 𝑆 = (2nd ‘𝑊) |
| 21 | 16, 20 | opeq12i 4838 | . 2 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 |
| 22 | 12, 21 | eqtr4di 2782 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 × cxp 5629 Rel wrel 5636 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 CVecOLDcvc 30537 NrmCVeccnv 30563 +𝑣 cpv 30564 ·𝑠OLD cns 30566 normCVcnmcv 30569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-oprab 7373 df-1st 7947 df-2nd 7948 df-vc 30538 df-nv 30571 df-va 30574 df-sm 30576 df-nmcv 30579 |
| This theorem is referenced by: nvi 30593 nvvc 30594 nvop 30655 |
| Copyright terms: Public domain | W3C validator |