![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvvop | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvop.1 | ⊢ 𝑊 = (1st ‘𝑈) |
nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvvop | ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcrel 30592 | . . 3 ⊢ Rel CVecOLD | |
2 | nvss 30625 | . . . . 5 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
3 | nvvop.1 | . . . . . . . 8 ⊢ 𝑊 = (1st ‘𝑈) | |
4 | eqid 2740 | . . . . . . . 8 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | 3, 4 | nvop2 30640 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, (normCV‘𝑈)〉) |
6 | 5 | eleq1d 2829 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec)) |
7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec) |
8 | 2, 7 | sselid 4006 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V)) |
9 | opelxp1 5742 | . . . 4 ⊢ (〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
11 | 1st2nd 8080 | . . 3 ⊢ ((Rel CVecOLD ∧ 𝑊 ∈ CVecOLD) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
12 | 1, 10, 11 | sylancr 586 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
13 | nvvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | 13 | vafval 30635 | . . . 4 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
15 | 3 | fveq2i 6923 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘(1st ‘𝑈)) |
16 | 14, 15 | eqtr4i 2771 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) |
17 | nvvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
18 | 17 | smfval 30637 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
19 | 3 | fveq2i 6923 | . . . 4 ⊢ (2nd ‘𝑊) = (2nd ‘(1st ‘𝑈)) |
20 | 18, 19 | eqtr4i 2771 | . . 3 ⊢ 𝑆 = (2nd ‘𝑊) |
21 | 16, 20 | opeq12i 4902 | . 2 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 |
22 | 12, 21 | eqtr4di 2798 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 Rel wrel 5705 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 CVecOLDcvc 30590 NrmCVeccnv 30616 +𝑣 cpv 30617 ·𝑠OLD cns 30619 normCVcnmcv 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-oprab 7452 df-1st 8030 df-2nd 8031 df-vc 30591 df-nv 30624 df-va 30627 df-sm 30629 df-nmcv 30632 |
This theorem is referenced by: nvi 30646 nvvc 30647 nvop 30708 |
Copyright terms: Public domain | W3C validator |