MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvop Structured version   Visualization version   GIF version

Theorem nvvop 27798
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvvop.1 𝑊 = (1st𝑈)
nvvop.2 𝐺 = ( +𝑣𝑈)
nvvop.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvvop (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)

Proof of Theorem nvvop
StepHypRef Expression
1 vcrel 27749 . . 3 Rel CVecOLD
2 nvss 27782 . . . . 5 NrmCVec ⊆ (CVecOLD × V)
3 nvvop.1 . . . . . . . 8 𝑊 = (1st𝑈)
4 eqid 2813 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
53, 4nvop2 27797 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, (normCV𝑈)⟩)
65eleq1d 2877 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec))
76ibi 258 . . . . 5 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec)
82, 7sseldi 3803 . . . 4 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V))
9 opelxp1 5357 . . . 4 (⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD)
108, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
11 1st2nd 7449 . . 3 ((Rel CVecOLD𝑊 ∈ CVecOLD) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
121, 10, 11sylancr 577 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
13 nvvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
1413vafval 27792 . . . 4 𝐺 = (1st ‘(1st𝑈))
153fveq2i 6414 . . . 4 (1st𝑊) = (1st ‘(1st𝑈))
1614, 15eqtr4i 2838 . . 3 𝐺 = (1st𝑊)
17 nvvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
1817smfval 27794 . . . 4 𝑆 = (2nd ‘(1st𝑈))
193fveq2i 6414 . . . 4 (2nd𝑊) = (2nd ‘(1st𝑈))
2018, 19eqtr4i 2838 . . 3 𝑆 = (2nd𝑊)
2116, 20opeq12i 4607 . 2 𝐺, 𝑆⟩ = ⟨(1st𝑊), (2nd𝑊)⟩
2212, 21syl6eqr 2865 1 (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1637  wcel 2157  Vcvv 3398  cop 4383   × cxp 5316  Rel wrel 5323  cfv 6104  1st c1st 7399  2nd c2nd 7400  CVecOLDcvc 27747  NrmCVeccnv 27773   +𝑣 cpv 27774   ·𝑠OLD cns 27776  normCVcnmcv 27779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-fo 6110  df-fv 6112  df-oprab 6881  df-1st 7401  df-2nd 7402  df-vc 27748  df-nv 27781  df-va 27784  df-sm 27786  df-nmcv 27789
This theorem is referenced by:  nvi  27803  nvvc  27804  nvop  27865
  Copyright terms: Public domain W3C validator