MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvop Structured version   Visualization version   GIF version

Theorem nvvop 30553
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvvop.1 𝑊 = (1st𝑈)
nvvop.2 𝐺 = ( +𝑣𝑈)
nvvop.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvvop (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)

Proof of Theorem nvvop
StepHypRef Expression
1 vcrel 30504 . . 3 Rel CVecOLD
2 nvss 30537 . . . . 5 NrmCVec ⊆ (CVecOLD × V)
3 nvvop.1 . . . . . . . 8 𝑊 = (1st𝑈)
4 eqid 2729 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
53, 4nvop2 30552 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, (normCV𝑈)⟩)
65eleq1d 2813 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec))
76ibi 267 . . . . 5 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ NrmCVec)
82, 7sselid 3933 . . . 4 (𝑈 ∈ NrmCVec → ⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V))
9 opelxp1 5661 . . . 4 (⟨𝑊, (normCV𝑈)⟩ ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD)
108, 9syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
11 1st2nd 7974 . . 3 ((Rel CVecOLD𝑊 ∈ CVecOLD) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
121, 10, 11sylancr 587 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
13 nvvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
1413vafval 30547 . . . 4 𝐺 = (1st ‘(1st𝑈))
153fveq2i 6825 . . . 4 (1st𝑊) = (1st ‘(1st𝑈))
1614, 15eqtr4i 2755 . . 3 𝐺 = (1st𝑊)
17 nvvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
1817smfval 30549 . . . 4 𝑆 = (2nd ‘(1st𝑈))
193fveq2i 6825 . . . 4 (2nd𝑊) = (2nd ‘(1st𝑈))
2018, 19eqtr4i 2755 . . 3 𝑆 = (2nd𝑊)
2116, 20opeq12i 4829 . 2 𝐺, 𝑆⟩ = ⟨(1st𝑊), (2nd𝑊)⟩
2212, 21eqtr4di 2782 1 (𝑈 ∈ NrmCVec → 𝑊 = ⟨𝐺, 𝑆⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583   × cxp 5617  Rel wrel 5624  cfv 6482  1st c1st 7922  2nd c2nd 7923  CVecOLDcvc 30502  NrmCVeccnv 30528   +𝑣 cpv 30529   ·𝑠OLD cns 30531  normCVcnmcv 30534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-oprab 7353  df-1st 7924  df-2nd 7925  df-vc 30503  df-nv 30536  df-va 30539  df-sm 30541  df-nmcv 30544
This theorem is referenced by:  nvi  30558  nvvc  30559  nvop  30620
  Copyright terms: Public domain W3C validator