Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvvop | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvop.1 | ⊢ 𝑊 = (1st ‘𝑈) |
nvvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvvop | ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcrel 28823 | . . 3 ⊢ Rel CVecOLD | |
2 | nvss 28856 | . . . . 5 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
3 | nvvop.1 | . . . . . . . 8 ⊢ 𝑊 = (1st ‘𝑈) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
5 | 3, 4 | nvop2 28871 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, (normCV‘𝑈)〉) |
6 | 5 | eleq1d 2823 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ↔ 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec)) |
7 | 6 | ibi 266 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ NrmCVec) |
8 | 2, 7 | sselid 3915 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V)) |
9 | opelxp1 5621 | . . . 4 ⊢ (〈𝑊, (normCV‘𝑈)〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
11 | 1st2nd 7853 | . . 3 ⊢ ((Rel CVecOLD ∧ 𝑊 ∈ CVecOLD) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
12 | 1, 10, 11 | sylancr 586 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
13 | nvvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | 13 | vafval 28866 | . . . 4 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
15 | 3 | fveq2i 6759 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘(1st ‘𝑈)) |
16 | 14, 15 | eqtr4i 2769 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) |
17 | nvvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
18 | 17 | smfval 28868 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
19 | 3 | fveq2i 6759 | . . . 4 ⊢ (2nd ‘𝑊) = (2nd ‘(1st ‘𝑈)) |
20 | 18, 19 | eqtr4i 2769 | . . 3 ⊢ 𝑆 = (2nd ‘𝑊) |
21 | 16, 20 | opeq12i 4806 | . 2 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 |
22 | 12, 21 | eqtr4di 2797 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 Rel wrel 5585 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 CVecOLDcvc 28821 NrmCVeccnv 28847 +𝑣 cpv 28848 ·𝑠OLD cns 28850 normCVcnmcv 28853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-oprab 7259 df-1st 7804 df-2nd 7805 df-vc 28822 df-nv 28855 df-va 28858 df-sm 28860 df-nmcv 28863 |
This theorem is referenced by: nvi 28877 nvvc 28878 nvop 28939 |
Copyright terms: Public domain | W3C validator |