MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcex Structured version   Visualization version   GIF version

Theorem vcex 30607
Description: The components of a complex vector space are sets. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
vcex (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem vcex
StepHypRef Expression
1 df-br 5149 . 2 (𝐺CVecOLD𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ CVecOLD)
2 vcrel 30589 . . 3 Rel CVecOLD
32brrelex12i 5744 . 2 (𝐺CVecOLD𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
41, 3sylbir 235 1 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  Vcvv 3478  cop 4637   class class class wbr 5148  CVecOLDcvc 30587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-vc 30588
This theorem is referenced by:  isvcOLD  30608  nvex  30640  isnv  30641
  Copyright terms: Public domain W3C validator