![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcex | Structured version Visualization version GIF version |
Description: The components of a complex vector space are sets. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcex | ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝐺CVecOLD𝑆 ↔ 〈𝐺, 𝑆〉 ∈ CVecOLD) | |
2 | vcrel 30247 | . . 3 ⊢ Rel CVecOLD | |
3 | 2 | brrelex12i 5731 | . 2 ⊢ (𝐺CVecOLD𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
4 | 1, 3 | sylbir 234 | 1 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 〈cop 4634 class class class wbr 5148 CVecOLDcvc 30245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-vc 30246 |
This theorem is referenced by: isvcOLD 30266 nvex 30298 isnv 30299 |
Copyright terms: Public domain | W3C validator |