MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcex Structured version   Visualization version   GIF version

Theorem vcex 30598
Description: The components of a complex vector space are sets. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
vcex (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem vcex
StepHypRef Expression
1 df-br 5143 . 2 (𝐺CVecOLD𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ CVecOLD)
2 vcrel 30580 . . 3 Rel CVecOLD
32brrelex12i 5739 . 2 (𝐺CVecOLD𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
41, 3sylbir 235 1 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3479  cop 4631   class class class wbr 5142  CVecOLDcvc 30578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-vc 30579
This theorem is referenced by:  isvcOLD  30599  nvex  30631  isnv  30632
  Copyright terms: Public domain W3C validator