![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcex | Structured version Visualization version GIF version |
Description: The components of a complex vector space are sets. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcex | ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝐺CVecOLD𝑆 ↔ 〈𝐺, 𝑆〉 ∈ CVecOLD) | |
2 | vcrel 30589 | . . 3 ⊢ Rel CVecOLD | |
3 | 2 | brrelex12i 5744 | . 2 ⊢ (𝐺CVecOLD𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
4 | 1, 3 | sylbir 235 | 1 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 〈cop 4637 class class class wbr 5148 CVecOLDcvc 30587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-vc 30588 |
This theorem is referenced by: isvcOLD 30608 nvex 30640 isnv 30641 |
Copyright terms: Public domain | W3C validator |