MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3gafOLD Structured version   Visualization version   GIF version

Theorem vtocl3gafOLD 3548
Description: Obsolete version of vtocl3gaf 3547 as of 31-May-2025. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vtocl3gaf.a 𝑥𝐴
vtocl3gaf.b 𝑦𝐴
vtocl3gaf.c 𝑧𝐴
vtocl3gaf.d 𝑦𝐵
vtocl3gaf.e 𝑧𝐵
vtocl3gaf.f 𝑧𝐶
vtocl3gaf.1 𝑥𝜓
vtocl3gaf.2 𝑦𝜒
vtocl3gaf.3 𝑧𝜃
vtocl3gaf.4 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl3gaf.5 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl3gaf.6 (𝑧 = 𝐶 → (𝜒𝜃))
vtocl3gaf.7 ((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑)
Assertion
Ref Expression
vtocl3gafOLD ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝜃(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem vtocl3gafOLD
StepHypRef Expression
1 vtocl3gaf.a . . 3 𝑥𝐴
2 vtocl3gaf.b . . 3 𝑦𝐴
3 vtocl3gaf.c . . 3 𝑧𝐴
4 vtocl3gaf.d . . 3 𝑦𝐵
5 vtocl3gaf.e . . 3 𝑧𝐵
6 vtocl3gaf.f . . 3 𝑧𝐶
71nfel1 2908 . . . . 5 𝑥 𝐴𝑅
8 nfv 1914 . . . . 5 𝑥 𝑦𝑆
9 nfv 1914 . . . . 5 𝑥 𝑧𝑇
107, 8, 9nf3an 1901 . . . 4 𝑥(𝐴𝑅𝑦𝑆𝑧𝑇)
11 vtocl3gaf.1 . . . 4 𝑥𝜓
1210, 11nfim 1896 . . 3 𝑥((𝐴𝑅𝑦𝑆𝑧𝑇) → 𝜓)
132nfel1 2908 . . . . 5 𝑦 𝐴𝑅
144nfel1 2908 . . . . 5 𝑦 𝐵𝑆
15 nfv 1914 . . . . 5 𝑦 𝑧𝑇
1613, 14, 15nf3an 1901 . . . 4 𝑦(𝐴𝑅𝐵𝑆𝑧𝑇)
17 vtocl3gaf.2 . . . 4 𝑦𝜒
1816, 17nfim 1896 . . 3 𝑦((𝐴𝑅𝐵𝑆𝑧𝑇) → 𝜒)
193nfel1 2908 . . . . 5 𝑧 𝐴𝑅
205nfel1 2908 . . . . 5 𝑧 𝐵𝑆
216nfel1 2908 . . . . 5 𝑧 𝐶𝑇
2219, 20, 21nf3an 1901 . . . 4 𝑧(𝐴𝑅𝐵𝑆𝐶𝑇)
23 vtocl3gaf.3 . . . 4 𝑧𝜃
2422, 23nfim 1896 . . 3 𝑧((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
25 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
26253anbi1d 1442 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆𝑧𝑇) ↔ (𝐴𝑅𝑦𝑆𝑧𝑇)))
27 vtocl3gaf.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
2826, 27imbi12d 344 . . 3 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑) ↔ ((𝐴𝑅𝑦𝑆𝑧𝑇) → 𝜓)))
29 eleq1 2816 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
30293anbi2d 1443 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆𝑧𝑇) ↔ (𝐴𝑅𝐵𝑆𝑧𝑇)))
31 vtocl3gaf.5 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
3230, 31imbi12d 344 . . 3 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆𝑧𝑇) → 𝜓) ↔ ((𝐴𝑅𝐵𝑆𝑧𝑇) → 𝜒)))
33 eleq1 2816 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑇𝐶𝑇))
34333anbi3d 1444 . . . 4 (𝑧 = 𝐶 → ((𝐴𝑅𝐵𝑆𝑧𝑇) ↔ (𝐴𝑅𝐵𝑆𝐶𝑇)))
35 vtocl3gaf.6 . . . 4 (𝑧 = 𝐶 → (𝜒𝜃))
3634, 35imbi12d 344 . . 3 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆𝑧𝑇) → 𝜒) ↔ ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)))
37 vtocl3gaf.7 . . 3 ((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑)
381, 2, 3, 4, 5, 6, 12, 18, 24, 28, 32, 36, 37vtocl3gf 3539 . 2 ((𝐴𝑅𝐵𝑆𝐶𝑇) → ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃))
3938pm2.43i 52 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator