MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3gafOLD Structured version   Visualization version   GIF version

Theorem vtocl3gafOLD 3594
Description: Obsolete version of vtocl3gaf 3593 as of 31-May-2025. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vtocl3gaf.a 𝑥𝐴
vtocl3gaf.b 𝑦𝐴
vtocl3gaf.c 𝑧𝐴
vtocl3gaf.d 𝑦𝐵
vtocl3gaf.e 𝑧𝐵
vtocl3gaf.f 𝑧𝐶
vtocl3gaf.1 𝑥𝜓
vtocl3gaf.2 𝑦𝜒
vtocl3gaf.3 𝑧𝜃
vtocl3gaf.4 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl3gaf.5 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl3gaf.6 (𝑧 = 𝐶 → (𝜒𝜃))
vtocl3gaf.7 ((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑)
Assertion
Ref Expression
vtocl3gafOLD ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝜃(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem vtocl3gafOLD
StepHypRef Expression
1 vtocl3gaf.a . . 3 𝑥𝐴
2 vtocl3gaf.b . . 3 𝑦𝐴
3 vtocl3gaf.c . . 3 𝑧𝐴
4 vtocl3gaf.d . . 3 𝑦𝐵
5 vtocl3gaf.e . . 3 𝑧𝐵
6 vtocl3gaf.f . . 3 𝑧𝐶
71nfel1 2925 . . . . 5 𝑥 𝐴𝑅
8 nfv 1913 . . . . 5 𝑥 𝑦𝑆
9 nfv 1913 . . . . 5 𝑥 𝑧𝑇
107, 8, 9nf3an 1900 . . . 4 𝑥(𝐴𝑅𝑦𝑆𝑧𝑇)
11 vtocl3gaf.1 . . . 4 𝑥𝜓
1210, 11nfim 1895 . . 3 𝑥((𝐴𝑅𝑦𝑆𝑧𝑇) → 𝜓)
132nfel1 2925 . . . . 5 𝑦 𝐴𝑅
144nfel1 2925 . . . . 5 𝑦 𝐵𝑆
15 nfv 1913 . . . . 5 𝑦 𝑧𝑇
1613, 14, 15nf3an 1900 . . . 4 𝑦(𝐴𝑅𝐵𝑆𝑧𝑇)
17 vtocl3gaf.2 . . . 4 𝑦𝜒
1816, 17nfim 1895 . . 3 𝑦((𝐴𝑅𝐵𝑆𝑧𝑇) → 𝜒)
193nfel1 2925 . . . . 5 𝑧 𝐴𝑅
205nfel1 2925 . . . . 5 𝑧 𝐵𝑆
216nfel1 2925 . . . . 5 𝑧 𝐶𝑇
2219, 20, 21nf3an 1900 . . . 4 𝑧(𝐴𝑅𝐵𝑆𝐶𝑇)
23 vtocl3gaf.3 . . . 4 𝑧𝜃
2422, 23nfim 1895 . . 3 𝑧((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
25 eleq1 2832 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
26253anbi1d 1440 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆𝑧𝑇) ↔ (𝐴𝑅𝑦𝑆𝑧𝑇)))
27 vtocl3gaf.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
2826, 27imbi12d 344 . . 3 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑) ↔ ((𝐴𝑅𝑦𝑆𝑧𝑇) → 𝜓)))
29 eleq1 2832 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
30293anbi2d 1441 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆𝑧𝑇) ↔ (𝐴𝑅𝐵𝑆𝑧𝑇)))
31 vtocl3gaf.5 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
3230, 31imbi12d 344 . . 3 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆𝑧𝑇) → 𝜓) ↔ ((𝐴𝑅𝐵𝑆𝑧𝑇) → 𝜒)))
33 eleq1 2832 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑇𝐶𝑇))
34333anbi3d 1442 . . . 4 (𝑧 = 𝐶 → ((𝐴𝑅𝐵𝑆𝑧𝑇) ↔ (𝐴𝑅𝐵𝑆𝐶𝑇)))
35 vtocl3gaf.6 . . . 4 (𝑧 = 𝐶 → (𝜒𝜃))
3634, 35imbi12d 344 . . 3 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆𝑧𝑇) → 𝜒) ↔ ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)))
37 vtocl3gaf.7 . . 3 ((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑)
381, 2, 3, 4, 5, 6, 12, 18, 24, 28, 32, 36, 37vtocl3gf 3585 . 2 ((𝐴𝑅𝐵𝑆𝐶𝑇) → ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃))
3938pm2.43i 52 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator