| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunint | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunint | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝑈 ∈ WUni) |
| 3 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 1, 3 | wununi 10725 | . . 3 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝑈) |
| 6 | intssuni 4951 | . . 3 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
| 8 | 2, 5, 7 | wunss 10731 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ∩ cint 4927 WUnicwun 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-uni 4889 df-int 4928 df-tr 5235 df-wun 10721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |