MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunint Structured version   Visualization version   GIF version

Theorem wunint 10755
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunint ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)

Proof of Theorem wunint
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
21adantr 480 . 2 ((𝜑𝐴 ≠ ∅) → 𝑈 ∈ WUni)
3 wununi.2 . . . 4 (𝜑𝐴𝑈)
41, 3wununi 10746 . . 3 (𝜑 𝐴𝑈)
54adantr 480 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
6 intssuni 4970 . . 3 (𝐴 ≠ ∅ → 𝐴 𝐴)
76adantl 481 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴 𝐴)
82, 5, 7wunss 10752 1 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2940  wss 3951  c0 4333   cuni 4907   cint 4946  WUnicwun 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-in 3958  df-ss 3968  df-nul 4334  df-pw 4602  df-uni 4908  df-int 4947  df-tr 5260  df-wun 10742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator