MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunint Structured version   Visualization version   GIF version

Theorem wunint 10617
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunint ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)

Proof of Theorem wunint
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
21adantr 480 . 2 ((𝜑𝐴 ≠ ∅) → 𝑈 ∈ WUni)
3 wununi.2 . . . 4 (𝜑𝐴𝑈)
41, 3wununi 10608 . . 3 (𝜑 𝐴𝑈)
54adantr 480 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
6 intssuni 4922 . . 3 (𝐴 ≠ ∅ → 𝐴 𝐴)
76adantl 481 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴 𝐴)
82, 5, 7wunss 10614 1 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wne 2929  wss 3898  c0 4282   cuni 4860   cint 4899  WUnicwun 10602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283  df-pw 4553  df-uni 4861  df-int 4900  df-tr 5203  df-wun 10604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator