MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunint Structured version   Visualization version   GIF version

Theorem wunint 10710
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunint ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)

Proof of Theorem wunint
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
21adantr 482 . 2 ((𝜑𝐴 ≠ ∅) → 𝑈 ∈ WUni)
3 wununi.2 . . . 4 (𝜑𝐴𝑈)
41, 3wununi 10701 . . 3 (𝜑 𝐴𝑈)
54adantr 482 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
6 intssuni 4975 . . 3 (𝐴 ≠ ∅ → 𝐴 𝐴)
76adantl 483 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴 𝐴)
82, 5, 7wunss 10707 1 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wne 2941  wss 3949  c0 4323   cuni 4909   cint 4951  WUnicwun 10695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4324  df-pw 4605  df-uni 4910  df-int 4952  df-tr 5267  df-wun 10697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator