![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunint | Structured version Visualization version GIF version |
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunint | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝑈 ∈ WUni) |
3 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 3 | wununi 10744 | . . 3 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝑈) |
6 | intssuni 4975 | . . 3 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
8 | 2, 5, 7 | wunss 10750 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ∩ cint 4951 WUnicwun 10738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-uni 4913 df-int 4952 df-tr 5266 df-wun 10740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |