MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunint Structured version   Visualization version   GIF version

Theorem wunint 10455
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunint ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)

Proof of Theorem wunint
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
21adantr 480 . 2 ((𝜑𝐴 ≠ ∅) → 𝑈 ∈ WUni)
3 wununi.2 . . . 4 (𝜑𝐴𝑈)
41, 3wununi 10446 . . 3 (𝜑 𝐴𝑈)
54adantr 480 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
6 intssuni 4906 . . 3 (𝐴 ≠ ∅ → 𝐴 𝐴)
76adantl 481 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴 𝐴)
82, 5, 7wunss 10452 1 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2944  wss 3891  c0 4261   cuni 4844   cint 4884  WUnicwun 10440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-sep 5226
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-nul 4262  df-pw 4540  df-uni 4845  df-int 4885  df-tr 5196  df-wun 10442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator