MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunint Structured version   Visualization version   GIF version

Theorem wunint 10470
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunint ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)

Proof of Theorem wunint
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
21adantr 481 . 2 ((𝜑𝐴 ≠ ∅) → 𝑈 ∈ WUni)
3 wununi.2 . . . 4 (𝜑𝐴𝑈)
41, 3wununi 10461 . . 3 (𝜑 𝐴𝑈)
54adantr 481 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
6 intssuni 4907 . . 3 (𝐴 ≠ ∅ → 𝐴 𝐴)
76adantl 482 . 2 ((𝜑𝐴 ≠ ∅) → 𝐴 𝐴)
82, 5, 7wunss 10467 1 ((𝜑𝐴 ≠ ∅) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2110  wne 2945  wss 3892  c0 4262   cuni 4845   cint 4885  WUnicwun 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711  ax-sep 5227
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-in 3899  df-ss 3909  df-nul 4263  df-pw 4541  df-uni 4846  df-int 4886  df-tr 5197  df-wun 10457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator