![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunint | Structured version Visualization version GIF version |
Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunint | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝑈 ∈ WUni) |
3 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 3 | wununi 10731 | . . 3 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
5 | 4 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝑈) |
6 | intssuni 4974 | . . 3 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
7 | 6 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
8 | 2, 5, 7 | wunss 10737 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3944 ∅c0 4322 ∪ cuni 4909 ∩ cint 4950 WUnicwun 10725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-in 3951 df-ss 3961 df-nul 4323 df-pw 4606 df-uni 4910 df-int 4951 df-tr 5267 df-wun 10727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |