| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunpr | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunpr | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | wunpr.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 4 | iswun 10605 | . . . . 5 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
| 5 | 4 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
| 6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑈 ∈ WUni → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
| 7 | simp3 1138 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) | |
| 8 | 7 | ralimi 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
| 9 | 3, 6, 8 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
| 10 | preq1 4687 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
| 11 | 10 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝐴, 𝑦} ∈ 𝑈)) |
| 12 | preq2 4688 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
| 13 | 12 | eleq1d 2818 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈)) |
| 14 | 11, 13 | rspc2va 3586 | . 2 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) |
| 15 | 1, 2, 9, 14 | syl21anc 837 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∅c0 4284 𝒫 cpw 4551 {cpr 4579 ∪ cuni 4860 Tr wtr 5202 WUnicwun 10601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-v 3440 df-un 3904 df-ss 3916 df-sn 4578 df-pr 4580 df-uni 4861 df-tr 5203 df-wun 10603 |
| This theorem is referenced by: wunun 10611 wuntp 10612 wunsn 10617 wunop 10623 intwun 10636 wuncval2 10648 |
| Copyright terms: Public domain | W3C validator |