MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunpr Structured version   Visualization version   GIF version

Theorem wunpr 10465
Description: A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunpr (𝜑 → {𝐴, 𝐵} ∈ 𝑈)

Proof of Theorem wunpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wununi.2 . 2 (𝜑𝐴𝑈)
2 wunpr.3 . 2 (𝜑𝐵𝑈)
3 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
4 iswun 10460 . . . . 5 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
54ibi 266 . . . 4 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
65simp3d 1143 . . 3 (𝑈 ∈ WUni → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
7 simp3 1137 . . . 4 (( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
87ralimi 3087 . . 3 (∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
93, 6, 83syl 18 . 2 (𝜑 → ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
10 preq1 4669 . . . 4 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
1110eleq1d 2823 . . 3 (𝑥 = 𝐴 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝐴, 𝑦} ∈ 𝑈))
12 preq2 4670 . . . 4 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
1312eleq1d 2823 . . 3 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈))
1411, 13rspc2va 3571 . 2 (((𝐴𝑈𝐵𝑈) ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈)
151, 2, 9, 14syl21anc 835 1 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  c0 4256  𝒫 cpw 4533  {cpr 4563   cuni 4839  Tr wtr 5191  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-sn 4562  df-pr 4564  df-uni 4840  df-tr 5192  df-wun 10458
This theorem is referenced by:  wunun  10466  wuntp  10467  wunsn  10472  wunop  10478  intwun  10491  wuncval2  10503
  Copyright terms: Public domain W3C validator