MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunf Structured version   Visualization version   GIF version

Theorem wunf 10739
Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
wunf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wunf (𝜑𝐹𝑈)

Proof of Theorem wunf
StepHypRef Expression
1 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wunop.3 . . . 4 (𝜑𝐵𝑈)
3 wunop.2 . . . 4 (𝜑𝐴𝑈)
41, 2, 3wunmap 10738 . . 3 (𝜑 → (𝐵m 𝐴) ∈ 𝑈)
51, 4wunelss 10720 . 2 (𝜑 → (𝐵m 𝐴) ⊆ 𝑈)
6 wunf.3 . . 3 (𝜑𝐹:𝐴𝐵)
72, 3elmapd 8852 . . 3 (𝜑 → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
86, 7mpbird 257 . 2 (𝜑𝐹 ∈ (𝐵m 𝐴))
95, 8sseldd 3959 1 (𝜑𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wf 6526  (class class class)co 7403  m cmap 8838  WUnicwun 10712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-pm 8841  df-wun 10714
This theorem is referenced by:  wunndx  17212  wunnat  17970  catcoppccl  18128  catcfuccl  18129  catcxpccl  18217
  Copyright terms: Public domain W3C validator