MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunf Structured version   Visualization version   GIF version

Theorem wunf 10764
Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
wunf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wunf (𝜑𝐹𝑈)

Proof of Theorem wunf
StepHypRef Expression
1 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wunop.3 . . . 4 (𝜑𝐵𝑈)
3 wunop.2 . . . 4 (𝜑𝐴𝑈)
41, 2, 3wunmap 10763 . . 3 (𝜑 → (𝐵m 𝐴) ∈ 𝑈)
51, 4wunelss 10745 . 2 (𝜑 → (𝐵m 𝐴) ⊆ 𝑈)
6 wunf.3 . . 3 (𝜑𝐹:𝐴𝐵)
72, 3elmapd 8878 . . 3 (𝜑 → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
86, 7mpbird 257 . 2 (𝜑𝐹 ∈ (𝐵m 𝐴))
95, 8sseldd 3995 1 (𝜑𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wf 6558  (class class class)co 7430  m cmap 8864  WUnicwun 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-map 8866  df-pm 8867  df-wun 10739
This theorem is referenced by:  wunndx  17228  wunnat  18010  wunnatOLD  18011  catcoppccl  18170  catcoppcclOLD  18171  catcfuccl  18172  catcfucclOLD  18173  catcxpccl  18262  catcxpcclOLD  18263
  Copyright terms: Public domain W3C validator