| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunf | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| wunf.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| wunf | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunop.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 1, 2, 3 | wunmap 10738 | . . 3 ⊢ (𝜑 → (𝐵 ↑m 𝐴) ∈ 𝑈) |
| 5 | 1, 4 | wunelss 10720 | . 2 ⊢ (𝜑 → (𝐵 ↑m 𝐴) ⊆ 𝑈) |
| 6 | wunf.3 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 7 | 2, 3 | elmapd 8852 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
| 8 | 6, 7 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m 𝐴)) |
| 9 | 5, 8 | sseldd 3959 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⟶wf 6526 (class class class)co 7403 ↑m cmap 8838 WUnicwun 10712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 df-pm 8841 df-wun 10714 |
| This theorem is referenced by: wunndx 17212 wunnat 17970 catcoppccl 18128 catcfuccl 18129 catcxpccl 18217 |
| Copyright terms: Public domain | W3C validator |