MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunf Structured version   Visualization version   GIF version

Theorem wunf 9863
Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
wunf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wunf (𝜑𝐹𝑈)

Proof of Theorem wunf
StepHypRef Expression
1 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wunop.3 . . . 4 (𝜑𝐵𝑈)
3 wunop.2 . . . 4 (𝜑𝐴𝑈)
41, 2, 3wunmap 9862 . . 3 (𝜑 → (𝐵𝑚 𝐴) ∈ 𝑈)
51, 4wunelss 9844 . 2 (𝜑 → (𝐵𝑚 𝐴) ⊆ 𝑈)
6 wunf.3 . . 3 (𝜑𝐹:𝐴𝐵)
72, 3elmapd 8135 . . 3 (𝜑 → (𝐹 ∈ (𝐵𝑚 𝐴) ↔ 𝐹:𝐴𝐵))
86, 7mpbird 249 . 2 (𝜑𝐹 ∈ (𝐵𝑚 𝐴))
95, 8sseldd 3827 1 (𝜑𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  wf 6118  (class class class)co 6904  𝑚 cmap 8121  WUnicwun 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-1st 7427  df-2nd 7428  df-map 8123  df-pm 8124  df-wun 9838
This theorem is referenced by:  wunndx  16242  wunnat  16967  catcoppccl  17109  catcfuccl  17110  catcxpccl  17199
  Copyright terms: Public domain W3C validator