![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunf | Structured version Visualization version GIF version |
Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
wunf.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wunf | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 2, 3 | wunmap 10795 | . . 3 ⊢ (𝜑 → (𝐵 ↑m 𝐴) ∈ 𝑈) |
5 | 1, 4 | wunelss 10777 | . 2 ⊢ (𝜑 → (𝐵 ↑m 𝐴) ⊆ 𝑈) |
6 | wunf.3 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | 2, 3 | elmapd 8898 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
8 | 6, 7 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m 𝐴)) |
9 | 5, 8 | sseldd 4009 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-pm 8887 df-wun 10771 |
This theorem is referenced by: wunndx 17242 wunnat 18024 wunnatOLD 18025 catcoppccl 18184 catcoppcclOLD 18185 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 |
Copyright terms: Public domain | W3C validator |