MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval2 Structured version   Visualization version   GIF version

Theorem wuncval2 10169
Description: Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncval2.f 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
wuncval2.u 𝑈 = ran 𝐹
Assertion
Ref Expression
wuncval2 (𝐴𝑉 → (wUniCl‘𝐴) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem wuncval2
Dummy variables 𝑣 𝑢 𝑤 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wuncval2.f . . . 4 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
2 wuncval2.u . . . 4 𝑈 = ran 𝐹
31, 2wunex2 10160 . . 3 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
4 wuncss 10167 . . 3 ((𝑈 ∈ WUni ∧ 𝐴𝑈) → (wUniCl‘𝐴) ⊆ 𝑈)
53, 4syl 17 . 2 (𝐴𝑉 → (wUniCl‘𝐴) ⊆ 𝑈)
6 frfnom 8070 . . . . . 6 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω
71fneq1i 6450 . . . . . 6 (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω)
86, 7mpbir 233 . . . . 5 𝐹 Fn ω
9 fniunfv 7006 . . . . 5 (𝐹 Fn ω → 𝑚 ∈ ω (𝐹𝑚) = ran 𝐹)
108, 9ax-mp 5 . . . 4 𝑚 ∈ ω (𝐹𝑚) = ran 𝐹
112, 10eqtr4i 2847 . . 3 𝑈 = 𝑚 ∈ ω (𝐹𝑚)
12 fveq2 6670 . . . . . . . 8 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
1312sseq1d 3998 . . . . . . 7 (𝑚 = ∅ → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘∅) ⊆ (wUniCl‘𝐴)))
14 fveq2 6670 . . . . . . . 8 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1514sseq1d 3998 . . . . . . 7 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹𝑛) ⊆ (wUniCl‘𝐴)))
16 fveq2 6670 . . . . . . . 8 (𝑚 = suc 𝑛 → (𝐹𝑚) = (𝐹‘suc 𝑛))
1716sseq1d 3998 . . . . . . 7 (𝑚 = suc 𝑛 → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))
18 1on 8109 . . . . . . . . . 10 1o ∈ On
19 unexg 7472 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1o ∈ On) → (𝐴 ∪ 1o) ∈ V)
2018, 19mpan2 689 . . . . . . . . 9 (𝐴𝑉 → (𝐴 ∪ 1o) ∈ V)
211fveq1i 6671 . . . . . . . . . 10 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅)
22 fr0g 8071 . . . . . . . . . 10 ((𝐴 ∪ 1o) ∈ V → ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅) = (𝐴 ∪ 1o))
2321, 22syl5eq 2868 . . . . . . . . 9 ((𝐴 ∪ 1o) ∈ V → (𝐹‘∅) = (𝐴 ∪ 1o))
2420, 23syl 17 . . . . . . . 8 (𝐴𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o))
25 wuncid 10165 . . . . . . . . 9 (𝐴𝑉𝐴 ⊆ (wUniCl‘𝐴))
26 df1o2 8116 . . . . . . . . . 10 1o = {∅}
27 wunccl 10166 . . . . . . . . . . . 12 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
2827wun0 10140 . . . . . . . . . . 11 (𝐴𝑉 → ∅ ∈ (wUniCl‘𝐴))
2928snssd 4742 . . . . . . . . . 10 (𝐴𝑉 → {∅} ⊆ (wUniCl‘𝐴))
3026, 29eqsstrid 4015 . . . . . . . . 9 (𝐴𝑉 → 1o ⊆ (wUniCl‘𝐴))
3125, 30unssd 4162 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∪ 1o) ⊆ (wUniCl‘𝐴))
3224, 31eqsstrd 4005 . . . . . . 7 (𝐴𝑉 → (𝐹‘∅) ⊆ (wUniCl‘𝐴))
33 simplr 767 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → 𝑛 ∈ ω)
34 fvex 6683 . . . . . . . . . . . . 13 (𝐹𝑛) ∈ V
3534uniex 7467 . . . . . . . . . . . . 13 (𝐹𝑛) ∈ V
3634, 35unex 7469 . . . . . . . . . . . 12 ((𝐹𝑛) ∪ (𝐹𝑛)) ∈ V
37 prex 5333 . . . . . . . . . . . . . 14 {𝒫 𝑢, 𝑢} ∈ V
3834mptex 6986 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ∈ V
3938rnex 7617 . . . . . . . . . . . . . 14 ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ∈ V
4037, 39unex 7469 . . . . . . . . . . . . 13 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ∈ V
4134, 40iunex 7669 . . . . . . . . . . . 12 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ∈ V
4236, 41unex 7469 . . . . . . . . . . 11 (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ∈ V
43 id 22 . . . . . . . . . . . . . 14 (𝑤 = 𝑧𝑤 = 𝑧)
44 unieq 4849 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 𝑤 = 𝑧)
4543, 44uneq12d 4140 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑤 𝑤) = (𝑧 𝑧))
46 pweq 4555 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥)
47 unieq 4849 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 𝑢 = 𝑥)
4846, 47preq12d 4677 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → {𝒫 𝑢, 𝑢} = {𝒫 𝑥, 𝑥})
49 preq1 4669 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → {𝑢, 𝑣} = {𝑥, 𝑣})
5049mpteq2dv 5162 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣𝑤 ↦ {𝑥, 𝑣}))
5150rneqd 5808 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣𝑤 ↦ {𝑥, 𝑣}))
5248, 51uneq12d 4140 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})))
5352cbviunv 4965 . . . . . . . . . . . . . 14 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣}))
54 preq2 4670 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑦 → {𝑥, 𝑣} = {𝑥, 𝑦})
5554cbvmptv 5169 . . . . . . . . . . . . . . . . . 18 (𝑣𝑤 ↦ {𝑥, 𝑣}) = (𝑦𝑤 ↦ {𝑥, 𝑦})
56 mpteq1 5154 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑦𝑤 ↦ {𝑥, 𝑦}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
5755, 56syl5eq 2868 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑣𝑤 ↦ {𝑥, 𝑣}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
5857rneqd 5808 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → ran (𝑣𝑤 ↦ {𝑥, 𝑣}) = ran (𝑦𝑧 ↦ {𝑥, 𝑦}))
5958uneq2d 4139 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6043, 59iuneq12d 4947 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6153, 60syl5eq 2868 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6245, 61uneq12d 4140 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦}))))
63 id 22 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → 𝑤 = (𝐹𝑛))
64 unieq 4849 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → 𝑤 = (𝐹𝑛))
6563, 64uneq12d 4140 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑛) → (𝑤 𝑤) = ((𝐹𝑛) ∪ (𝐹𝑛)))
66 mpteq1 5154 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑛) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))
6766rneqd 5808 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑛) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))
6867uneq2d 4139 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})))
6963, 68iuneq12d 4947 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑛) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})))
7065, 69uneq12d 4140 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑛) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
711, 62, 70frsucmpt2 8076 . . . . . . . . . . 11 ((𝑛 ∈ ω ∧ (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑛) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
7233, 42, 71sylancl 588 . . . . . . . . . 10 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
73 simpr 487 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
7427ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (wUniCl‘𝐴) ∈ WUni)
7573sselda 3967 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
7674, 75wunelss 10130 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ⊆ (wUniCl‘𝐴))
7776ralrimiva 3182 . . . . . . . . . . . . 13 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹𝑛)𝑢 ⊆ (wUniCl‘𝐴))
78 unissb 4870 . . . . . . . . . . . . 13 ( (𝐹𝑛) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹𝑛)𝑢 ⊆ (wUniCl‘𝐴))
7977, 78sylibr 236 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
8073, 79unssd 4162 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ((𝐹𝑛) ∪ (𝐹𝑛)) ⊆ (wUniCl‘𝐴))
8174, 75wunpw 10129 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝒫 𝑢 ∈ (wUniCl‘𝐴))
8274, 75wununi 10128 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
8381, 82prssd 4755 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → {𝒫 𝑢, 𝑢} ⊆ (wUniCl‘𝐴))
8474adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → (wUniCl‘𝐴) ∈ WUni)
8575adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
86 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
8786sselda 3967 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → 𝑣 ∈ (wUniCl‘𝐴))
8884, 85, 87wunpr 10131 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → {𝑢, 𝑣} ∈ (wUniCl‘𝐴))
8988fmpttd 6879 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}):(𝐹𝑛)⟶(wUniCl‘𝐴))
9089frnd 6521 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ⊆ (wUniCl‘𝐴))
9183, 90unssd 4162 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9291ralrimiva 3182 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
93 iunss 4969 . . . . . . . . . . . 12 ( 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9492, 93sylibr 236 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9580, 94unssd 4162 . . . . . . . . . 10 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ⊆ (wUniCl‘𝐴))
9672, 95eqsstrd 4005 . . . . . . . . 9 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))
9796ex 415 . . . . . . . 8 ((𝐴𝑉𝑛 ∈ ω) → ((𝐹𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))
9897expcom 416 . . . . . . 7 (𝑛 ∈ ω → (𝐴𝑉 → ((𝐹𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))))
9913, 15, 17, 32, 98finds2 7610 . . . . . 6 (𝑚 ∈ ω → (𝐴𝑉 → (𝐹𝑚) ⊆ (wUniCl‘𝐴)))
10099com12 32 . . . . 5 (𝐴𝑉 → (𝑚 ∈ ω → (𝐹𝑚) ⊆ (wUniCl‘𝐴)))
101100ralrimiv 3181 . . . 4 (𝐴𝑉 → ∀𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
102 iunss 4969 . . . 4 ( 𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ ∀𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
103101, 102sylibr 236 . . 3 (𝐴𝑉 𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
10411, 103eqsstrid 4015 . 2 (𝐴𝑉𝑈 ⊆ (wUniCl‘𝐴))
1055, 104eqssd 3984 1 (𝐴𝑉 → (wUniCl‘𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cun 3934  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  {cpr 4569   cuni 4838   ciun 4919  cmpt 5146  ran crn 5556  cres 5557  Oncon0 6191  suc csuc 6193   Fn wfn 6350  cfv 6355  ωcom 7580  reccrdg 8045  1oc1o 8095  WUnicwun 10122  wUniClcwunm 10123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-wun 10124  df-wunc 10125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator