MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval2 Structured version   Visualization version   GIF version

Theorem wuncval2 10700
Description: Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncval2.f 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
wuncval2.u 𝑈 = ran 𝐹
Assertion
Ref Expression
wuncval2 (𝐴𝑉 → (wUniCl‘𝐴) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem wuncval2
Dummy variables 𝑣 𝑢 𝑤 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wuncval2.f . . . 4 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
2 wuncval2.u . . . 4 𝑈 = ran 𝐹
31, 2wunex2 10691 . . 3 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
4 wuncss 10698 . . 3 ((𝑈 ∈ WUni ∧ 𝐴𝑈) → (wUniCl‘𝐴) ⊆ 𝑈)
53, 4syl 17 . 2 (𝐴𝑉 → (wUniCl‘𝐴) ⊆ 𝑈)
6 frfnom 8403 . . . . . 6 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω
71fneq1i 6615 . . . . . 6 (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω)
86, 7mpbir 231 . . . . 5 𝐹 Fn ω
9 fniunfv 7221 . . . . 5 (𝐹 Fn ω → 𝑚 ∈ ω (𝐹𝑚) = ran 𝐹)
108, 9ax-mp 5 . . . 4 𝑚 ∈ ω (𝐹𝑚) = ran 𝐹
112, 10eqtr4i 2755 . . 3 𝑈 = 𝑚 ∈ ω (𝐹𝑚)
12 fveq2 6858 . . . . . . . 8 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
1312sseq1d 3978 . . . . . . 7 (𝑚 = ∅ → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘∅) ⊆ (wUniCl‘𝐴)))
14 fveq2 6858 . . . . . . . 8 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1514sseq1d 3978 . . . . . . 7 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹𝑛) ⊆ (wUniCl‘𝐴)))
16 fveq2 6858 . . . . . . . 8 (𝑚 = suc 𝑛 → (𝐹𝑚) = (𝐹‘suc 𝑛))
1716sseq1d 3978 . . . . . . 7 (𝑚 = suc 𝑛 → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))
18 1on 8446 . . . . . . . . . 10 1o ∈ On
19 unexg 7719 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1o ∈ On) → (𝐴 ∪ 1o) ∈ V)
2018, 19mpan2 691 . . . . . . . . 9 (𝐴𝑉 → (𝐴 ∪ 1o) ∈ V)
211fveq1i 6859 . . . . . . . . . 10 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅)
22 fr0g 8404 . . . . . . . . . 10 ((𝐴 ∪ 1o) ∈ V → ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅) = (𝐴 ∪ 1o))
2321, 22eqtrid 2776 . . . . . . . . 9 ((𝐴 ∪ 1o) ∈ V → (𝐹‘∅) = (𝐴 ∪ 1o))
2420, 23syl 17 . . . . . . . 8 (𝐴𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o))
25 wuncid 10696 . . . . . . . . 9 (𝐴𝑉𝐴 ⊆ (wUniCl‘𝐴))
26 df1o2 8441 . . . . . . . . . 10 1o = {∅}
27 wunccl 10697 . . . . . . . . . . . 12 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
2827wun0 10671 . . . . . . . . . . 11 (𝐴𝑉 → ∅ ∈ (wUniCl‘𝐴))
2928snssd 4773 . . . . . . . . . 10 (𝐴𝑉 → {∅} ⊆ (wUniCl‘𝐴))
3026, 29eqsstrid 3985 . . . . . . . . 9 (𝐴𝑉 → 1o ⊆ (wUniCl‘𝐴))
3125, 30unssd 4155 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∪ 1o) ⊆ (wUniCl‘𝐴))
3224, 31eqsstrd 3981 . . . . . . 7 (𝐴𝑉 → (𝐹‘∅) ⊆ (wUniCl‘𝐴))
33 simplr 768 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → 𝑛 ∈ ω)
34 fvex 6871 . . . . . . . . . . . . 13 (𝐹𝑛) ∈ V
3534uniex 7717 . . . . . . . . . . . . 13 (𝐹𝑛) ∈ V
3634, 35unex 7720 . . . . . . . . . . . 12 ((𝐹𝑛) ∪ (𝐹𝑛)) ∈ V
37 prex 5392 . . . . . . . . . . . . . 14 {𝒫 𝑢, 𝑢} ∈ V
3834mptex 7197 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ∈ V
3938rnex 7886 . . . . . . . . . . . . . 14 ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ∈ V
4037, 39unex 7720 . . . . . . . . . . . . 13 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ∈ V
4134, 40iunex 7947 . . . . . . . . . . . 12 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ∈ V
4236, 41unex 7720 . . . . . . . . . . 11 (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ∈ V
43 id 22 . . . . . . . . . . . . . 14 (𝑤 = 𝑧𝑤 = 𝑧)
44 unieq 4882 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 𝑤 = 𝑧)
4543, 44uneq12d 4132 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑤 𝑤) = (𝑧 𝑧))
46 pweq 4577 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥)
47 unieq 4882 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 𝑢 = 𝑥)
4846, 47preq12d 4705 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → {𝒫 𝑢, 𝑢} = {𝒫 𝑥, 𝑥})
49 preq1 4697 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → {𝑢, 𝑣} = {𝑥, 𝑣})
5049mpteq2dv 5201 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣𝑤 ↦ {𝑥, 𝑣}))
5150rneqd 5902 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣𝑤 ↦ {𝑥, 𝑣}))
5248, 51uneq12d 4132 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})))
5352cbviunv 5004 . . . . . . . . . . . . . 14 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣}))
54 preq2 4698 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑦 → {𝑥, 𝑣} = {𝑥, 𝑦})
5554cbvmptv 5211 . . . . . . . . . . . . . . . . . 18 (𝑣𝑤 ↦ {𝑥, 𝑣}) = (𝑦𝑤 ↦ {𝑥, 𝑦})
56 mpteq1 5196 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑦𝑤 ↦ {𝑥, 𝑦}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
5755, 56eqtrid 2776 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑣𝑤 ↦ {𝑥, 𝑣}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
5857rneqd 5902 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → ran (𝑣𝑤 ↦ {𝑥, 𝑣}) = ran (𝑦𝑧 ↦ {𝑥, 𝑦}))
5958uneq2d 4131 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6043, 59iuneq12d 4985 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6153, 60eqtrid 2776 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6245, 61uneq12d 4132 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦}))))
63 id 22 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → 𝑤 = (𝐹𝑛))
64 unieq 4882 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → 𝑤 = (𝐹𝑛))
6563, 64uneq12d 4132 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑛) → (𝑤 𝑤) = ((𝐹𝑛) ∪ (𝐹𝑛)))
66 mpteq1 5196 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑛) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))
6766rneqd 5902 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑛) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))
6867uneq2d 4131 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})))
6963, 68iuneq12d 4985 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑛) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})))
7065, 69uneq12d 4132 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑛) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
711, 62, 70frsucmpt2 8408 . . . . . . . . . . 11 ((𝑛 ∈ ω ∧ (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑛) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
7233, 42, 71sylancl 586 . . . . . . . . . 10 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
73 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
7427ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (wUniCl‘𝐴) ∈ WUni)
7573sselda 3946 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
7674, 75wunelss 10661 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ⊆ (wUniCl‘𝐴))
7776ralrimiva 3125 . . . . . . . . . . . . 13 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹𝑛)𝑢 ⊆ (wUniCl‘𝐴))
78 unissb 4903 . . . . . . . . . . . . 13 ( (𝐹𝑛) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹𝑛)𝑢 ⊆ (wUniCl‘𝐴))
7977, 78sylibr 234 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
8073, 79unssd 4155 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ((𝐹𝑛) ∪ (𝐹𝑛)) ⊆ (wUniCl‘𝐴))
8174, 75wunpw 10660 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝒫 𝑢 ∈ (wUniCl‘𝐴))
8274, 75wununi 10659 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
8381, 82prssd 4786 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → {𝒫 𝑢, 𝑢} ⊆ (wUniCl‘𝐴))
8474adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → (wUniCl‘𝐴) ∈ WUni)
8575adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
86 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
8786sselda 3946 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → 𝑣 ∈ (wUniCl‘𝐴))
8884, 85, 87wunpr 10662 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → {𝑢, 𝑣} ∈ (wUniCl‘𝐴))
8988fmpttd 7087 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}):(𝐹𝑛)⟶(wUniCl‘𝐴))
9089frnd 6696 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ⊆ (wUniCl‘𝐴))
9183, 90unssd 4155 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9291ralrimiva 3125 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
93 iunss 5009 . . . . . . . . . . . 12 ( 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9492, 93sylibr 234 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9580, 94unssd 4155 . . . . . . . . . 10 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ⊆ (wUniCl‘𝐴))
9672, 95eqsstrd 3981 . . . . . . . . 9 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))
9796ex 412 . . . . . . . 8 ((𝐴𝑉𝑛 ∈ ω) → ((𝐹𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))
9897expcom 413 . . . . . . 7 (𝑛 ∈ ω → (𝐴𝑉 → ((𝐹𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))))
9913, 15, 17, 32, 98finds2 7874 . . . . . 6 (𝑚 ∈ ω → (𝐴𝑉 → (𝐹𝑚) ⊆ (wUniCl‘𝐴)))
10099com12 32 . . . . 5 (𝐴𝑉 → (𝑚 ∈ ω → (𝐹𝑚) ⊆ (wUniCl‘𝐴)))
101100ralrimiv 3124 . . . 4 (𝐴𝑉 → ∀𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
102 iunss 5009 . . . 4 ( 𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ ∀𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
103101, 102sylibr 234 . . 3 (𝐴𝑉 𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
10411, 103eqsstrid 3985 . 2 (𝐴𝑉𝑈 ⊆ (wUniCl‘𝐴))
1055, 104eqssd 3964 1 (𝐴𝑉 → (wUniCl‘𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cun 3912  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  {cpr 4591   cuni 4871   ciun 4955  cmpt 5188  ran crn 5639  cres 5640  Oncon0 6332  suc csuc 6334   Fn wfn 6506  cfv 6511  ωcom 7842  reccrdg 8377  1oc1o 8427  WUnicwun 10653  wUniClcwunm 10654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-wun 10655  df-wunc 10656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator