MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval2 Structured version   Visualization version   GIF version

Theorem wuncval2 10487
Description: Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncval2.f 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
wuncval2.u 𝑈 = ran 𝐹
Assertion
Ref Expression
wuncval2 (𝐴𝑉 → (wUniCl‘𝐴) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem wuncval2
Dummy variables 𝑣 𝑢 𝑤 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wuncval2.f . . . 4 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
2 wuncval2.u . . . 4 𝑈 = ran 𝐹
31, 2wunex2 10478 . . 3 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
4 wuncss 10485 . . 3 ((𝑈 ∈ WUni ∧ 𝐴𝑈) → (wUniCl‘𝐴) ⊆ 𝑈)
53, 4syl 17 . 2 (𝐴𝑉 → (wUniCl‘𝐴) ⊆ 𝑈)
6 frfnom 8250 . . . . . 6 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω
71fneq1i 6526 . . . . . 6 (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω)
86, 7mpbir 230 . . . . 5 𝐹 Fn ω
9 fniunfv 7114 . . . . 5 (𝐹 Fn ω → 𝑚 ∈ ω (𝐹𝑚) = ran 𝐹)
108, 9ax-mp 5 . . . 4 𝑚 ∈ ω (𝐹𝑚) = ran 𝐹
112, 10eqtr4i 2770 . . 3 𝑈 = 𝑚 ∈ ω (𝐹𝑚)
12 fveq2 6768 . . . . . . . 8 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
1312sseq1d 3956 . . . . . . 7 (𝑚 = ∅ → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘∅) ⊆ (wUniCl‘𝐴)))
14 fveq2 6768 . . . . . . . 8 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1514sseq1d 3956 . . . . . . 7 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹𝑛) ⊆ (wUniCl‘𝐴)))
16 fveq2 6768 . . . . . . . 8 (𝑚 = suc 𝑛 → (𝐹𝑚) = (𝐹‘suc 𝑛))
1716sseq1d 3956 . . . . . . 7 (𝑚 = suc 𝑛 → ((𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))
18 1on 8288 . . . . . . . . . 10 1o ∈ On
19 unexg 7590 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1o ∈ On) → (𝐴 ∪ 1o) ∈ V)
2018, 19mpan2 687 . . . . . . . . 9 (𝐴𝑉 → (𝐴 ∪ 1o) ∈ V)
211fveq1i 6769 . . . . . . . . . 10 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅)
22 fr0g 8251 . . . . . . . . . 10 ((𝐴 ∪ 1o) ∈ V → ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅) = (𝐴 ∪ 1o))
2321, 22eqtrid 2791 . . . . . . . . 9 ((𝐴 ∪ 1o) ∈ V → (𝐹‘∅) = (𝐴 ∪ 1o))
2420, 23syl 17 . . . . . . . 8 (𝐴𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o))
25 wuncid 10483 . . . . . . . . 9 (𝐴𝑉𝐴 ⊆ (wUniCl‘𝐴))
26 df1o2 8293 . . . . . . . . . 10 1o = {∅}
27 wunccl 10484 . . . . . . . . . . . 12 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
2827wun0 10458 . . . . . . . . . . 11 (𝐴𝑉 → ∅ ∈ (wUniCl‘𝐴))
2928snssd 4747 . . . . . . . . . 10 (𝐴𝑉 → {∅} ⊆ (wUniCl‘𝐴))
3026, 29eqsstrid 3973 . . . . . . . . 9 (𝐴𝑉 → 1o ⊆ (wUniCl‘𝐴))
3125, 30unssd 4124 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∪ 1o) ⊆ (wUniCl‘𝐴))
3224, 31eqsstrd 3963 . . . . . . 7 (𝐴𝑉 → (𝐹‘∅) ⊆ (wUniCl‘𝐴))
33 simplr 765 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → 𝑛 ∈ ω)
34 fvex 6781 . . . . . . . . . . . . 13 (𝐹𝑛) ∈ V
3534uniex 7585 . . . . . . . . . . . . 13 (𝐹𝑛) ∈ V
3634, 35unex 7587 . . . . . . . . . . . 12 ((𝐹𝑛) ∪ (𝐹𝑛)) ∈ V
37 prex 5358 . . . . . . . . . . . . . 14 {𝒫 𝑢, 𝑢} ∈ V
3834mptex 7093 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ∈ V
3938rnex 7746 . . . . . . . . . . . . . 14 ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ∈ V
4037, 39unex 7587 . . . . . . . . . . . . 13 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ∈ V
4134, 40iunex 7797 . . . . . . . . . . . 12 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ∈ V
4236, 41unex 7587 . . . . . . . . . . 11 (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ∈ V
43 id 22 . . . . . . . . . . . . . 14 (𝑤 = 𝑧𝑤 = 𝑧)
44 unieq 4855 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 𝑤 = 𝑧)
4543, 44uneq12d 4102 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑤 𝑤) = (𝑧 𝑧))
46 pweq 4554 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥)
47 unieq 4855 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 𝑢 = 𝑥)
4846, 47preq12d 4682 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → {𝒫 𝑢, 𝑢} = {𝒫 𝑥, 𝑥})
49 preq1 4674 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → {𝑢, 𝑣} = {𝑥, 𝑣})
5049mpteq2dv 5180 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣𝑤 ↦ {𝑥, 𝑣}))
5150rneqd 5844 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣𝑤 ↦ {𝑥, 𝑣}))
5248, 51uneq12d 4102 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})))
5352cbviunv 4974 . . . . . . . . . . . . . 14 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣}))
54 preq2 4675 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑦 → {𝑥, 𝑣} = {𝑥, 𝑦})
5554cbvmptv 5191 . . . . . . . . . . . . . . . . . 18 (𝑣𝑤 ↦ {𝑥, 𝑣}) = (𝑦𝑤 ↦ {𝑥, 𝑦})
56 mpteq1 5171 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑦𝑤 ↦ {𝑥, 𝑦}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
5755, 56eqtrid 2791 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑣𝑤 ↦ {𝑥, 𝑣}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
5857rneqd 5844 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → ran (𝑣𝑤 ↦ {𝑥, 𝑣}) = ran (𝑦𝑧 ↦ {𝑥, 𝑦}))
5958uneq2d 4101 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6043, 59iuneq12d 4957 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑣𝑤 ↦ {𝑥, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6153, 60eqtrid 2791 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
6245, 61uneq12d 4102 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦}))))
63 id 22 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → 𝑤 = (𝐹𝑛))
64 unieq 4855 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → 𝑤 = (𝐹𝑛))
6563, 64uneq12d 4102 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑛) → (𝑤 𝑤) = ((𝐹𝑛) ∪ (𝐹𝑛)))
66 mpteq1 5171 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑛) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))
6766rneqd 5844 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑛) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))
6867uneq2d 4101 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑛) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})))
6963, 68iuneq12d 4957 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑛) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})))
7065, 69uneq12d 4102 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑛) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
711, 62, 70frsucmpt2 8255 . . . . . . . . . . 11 ((𝑛 ∈ ω ∧ (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑛) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
7233, 42, 71sylancl 585 . . . . . . . . . 10 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) = (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))))
73 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
7427ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (wUniCl‘𝐴) ∈ WUni)
7573sselda 3925 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
7674, 75wunelss 10448 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ⊆ (wUniCl‘𝐴))
7776ralrimiva 3109 . . . . . . . . . . . . 13 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹𝑛)𝑢 ⊆ (wUniCl‘𝐴))
78 unissb 4878 . . . . . . . . . . . . 13 ( (𝐹𝑛) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹𝑛)𝑢 ⊆ (wUniCl‘𝐴))
7977, 78sylibr 233 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
8073, 79unssd 4124 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ((𝐹𝑛) ∪ (𝐹𝑛)) ⊆ (wUniCl‘𝐴))
8174, 75wunpw 10447 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝒫 𝑢 ∈ (wUniCl‘𝐴))
8274, 75wununi 10446 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
8381, 82prssd 4760 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → {𝒫 𝑢, 𝑢} ⊆ (wUniCl‘𝐴))
8474adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → (wUniCl‘𝐴) ∈ WUni)
8575adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → 𝑢 ∈ (wUniCl‘𝐴))
86 simplr 765 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (wUniCl‘𝐴))
8786sselda 3925 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → 𝑣 ∈ (wUniCl‘𝐴))
8884, 85, 87wunpr 10449 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) ∧ 𝑣 ∈ (𝐹𝑛)) → {𝑢, 𝑣} ∈ (wUniCl‘𝐴))
8988fmpttd 6983 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}):(𝐹𝑛)⟶(wUniCl‘𝐴))
9089frnd 6604 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}) ⊆ (wUniCl‘𝐴))
9183, 90unssd 4124 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹𝑛)) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9291ralrimiva 3109 . . . . . . . . . . . 12 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
93 iunss 4979 . . . . . . . . . . . 12 ( 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9492, 93sylibr 233 . . . . . . . . . . 11 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴))
9580, 94unssd 4124 . . . . . . . . . 10 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (((𝐹𝑛) ∪ (𝐹𝑛)) ∪ 𝑢 ∈ (𝐹𝑛)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑛) ↦ {𝑢, 𝑣}))) ⊆ (wUniCl‘𝐴))
9672, 95eqsstrd 3963 . . . . . . . . 9 (((𝐴𝑉𝑛 ∈ ω) ∧ (𝐹𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))
9796ex 412 . . . . . . . 8 ((𝐴𝑉𝑛 ∈ ω) → ((𝐹𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))
9897expcom 413 . . . . . . 7 (𝑛 ∈ ω → (𝐴𝑉 → ((𝐹𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))))
9913, 15, 17, 32, 98finds2 7734 . . . . . 6 (𝑚 ∈ ω → (𝐴𝑉 → (𝐹𝑚) ⊆ (wUniCl‘𝐴)))
10099com12 32 . . . . 5 (𝐴𝑉 → (𝑚 ∈ ω → (𝐹𝑚) ⊆ (wUniCl‘𝐴)))
101100ralrimiv 3108 . . . 4 (𝐴𝑉 → ∀𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
102 iunss 4979 . . . 4 ( 𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴) ↔ ∀𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
103101, 102sylibr 233 . . 3 (𝐴𝑉 𝑚 ∈ ω (𝐹𝑚) ⊆ (wUniCl‘𝐴))
10411, 103eqsstrid 3973 . 2 (𝐴𝑉𝑈 ⊆ (wUniCl‘𝐴))
1055, 104eqssd 3942 1 (𝐴𝑉 → (wUniCl‘𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  cun 3889  wss 3891  c0 4261  𝒫 cpw 4538  {csn 4566  {cpr 4568   cuni 4844   ciun 4929  cmpt 5161  ran crn 5589  cres 5590  Oncon0 6263  suc csuc 6265   Fn wfn 6425  cfv 6430  ωcom 7700  reccrdg 8224  1oc1o 8274  WUnicwun 10440  wUniClcwunm 10441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-wun 10442  df-wunc 10443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator