Step | Hyp | Ref
| Expression |
1 | | wuncval2.f |
. . . 4
⊢ 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾
ω) |
2 | | wuncval2.u |
. . . 4
⊢ 𝑈 = ∪
ran 𝐹 |
3 | 1, 2 | wunex2 10494 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
4 | | wuncss 10501 |
. . 3
⊢ ((𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈) → (wUniCl‘𝐴) ⊆ 𝑈) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ⊆ 𝑈) |
6 | | frfnom 8266 |
. . . . . 6
⊢
(rec((𝑧 ∈ V
↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn
ω |
7 | 1 | fneq1i 6530 |
. . . . . 6
⊢ (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn
ω) |
8 | 6, 7 | mpbir 230 |
. . . . 5
⊢ 𝐹 Fn ω |
9 | | fniunfv 7120 |
. . . . 5
⊢ (𝐹 Fn ω → ∪ 𝑚 ∈ ω (𝐹‘𝑚) = ∪ ran 𝐹) |
10 | 8, 9 | ax-mp 5 |
. . . 4
⊢ ∪ 𝑚 ∈ ω (𝐹‘𝑚) = ∪ ran 𝐹 |
11 | 2, 10 | eqtr4i 2769 |
. . 3
⊢ 𝑈 = ∪ 𝑚 ∈ ω (𝐹‘𝑚) |
12 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑚 = ∅ → (𝐹‘𝑚) = (𝐹‘∅)) |
13 | 12 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑚 = ∅ → ((𝐹‘𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘∅) ⊆ (wUniCl‘𝐴))) |
14 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
15 | 14 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴))) |
16 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑚 = suc 𝑛 → (𝐹‘𝑚) = (𝐹‘suc 𝑛)) |
17 | 16 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → ((𝐹‘𝑚) ⊆ (wUniCl‘𝐴) ↔ (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))) |
18 | | 1on 8309 |
. . . . . . . . . 10
⊢
1o ∈ On |
19 | | unexg 7599 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) →
(𝐴 ∪ 1o)
∈ V) |
20 | 18, 19 | mpan2 688 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 1o) ∈
V) |
21 | 1 | fveq1i 6775 |
. . . . . . . . . 10
⊢ (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾
ω)‘∅) |
22 | | fr0g 8267 |
. . . . . . . . . 10
⊢ ((𝐴 ∪ 1o) ∈ V
→ ((rec((𝑧 ∈ V
↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾
ω)‘∅) = (𝐴 ∪ 1o)) |
23 | 21, 22 | eqtrid 2790 |
. . . . . . . . 9
⊢ ((𝐴 ∪ 1o) ∈ V
→ (𝐹‘∅) =
(𝐴 ∪
1o)) |
24 | 20, 23 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o)) |
25 | | wuncid 10499 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (wUniCl‘𝐴)) |
26 | | df1o2 8304 |
. . . . . . . . . 10
⊢
1o = {∅} |
27 | | wunccl 10500 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ∈ WUni) |
28 | 27 | wun0 10474 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ∅ ∈ (wUniCl‘𝐴)) |
29 | 28 | snssd 4742 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → {∅} ⊆
(wUniCl‘𝐴)) |
30 | 26, 29 | eqsstrid 3969 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 1o ⊆
(wUniCl‘𝐴)) |
31 | 25, 30 | unssd 4120 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 1o) ⊆
(wUniCl‘𝐴)) |
32 | 24, 31 | eqsstrd 3959 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐹‘∅) ⊆ (wUniCl‘𝐴)) |
33 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → 𝑛 ∈ ω) |
34 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢ (𝐹‘𝑛) ∈ V |
35 | 34 | uniex 7594 |
. . . . . . . . . . . . 13
⊢ ∪ (𝐹‘𝑛) ∈ V |
36 | 34, 35 | unex 7596 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∈ V |
37 | | prex 5355 |
. . . . . . . . . . . . . 14
⊢
{𝒫 𝑢, ∪ 𝑢}
∈ V |
38 | 34 | mptex 7099 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}) ∈ V |
39 | 38 | rnex 7759 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}) ∈ V |
40 | 37, 39 | unex 7596 |
. . . . . . . . . . . . 13
⊢
({𝒫 𝑢, ∪ 𝑢}
∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ∈ V |
41 | 34, 40 | iunex 7811 |
. . . . . . . . . . . 12
⊢ ∪ 𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ∈ V |
42 | 36, 41 | unex 7596 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∪ ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}))) ∈ V |
43 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
44 | | unieq 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ∪ 𝑤 = ∪
𝑧) |
45 | 43, 44 | uneq12d 4098 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑤 ∪ ∪ 𝑤) = (𝑧 ∪ ∪ 𝑧)) |
46 | | pweq 4549 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥) |
47 | | unieq 4850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑥 → ∪ 𝑢 = ∪
𝑥) |
48 | 46, 47 | preq12d 4677 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑥 → {𝒫 𝑢, ∪ 𝑢} = {𝒫 𝑥, ∪
𝑥}) |
49 | | preq1 4669 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑥 → {𝑢, 𝑣} = {𝑥, 𝑣}) |
50 | 49 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑥 → (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣})) |
51 | 50 | rneqd 5847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑥 → ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣})) |
52 | 48, 51 | uneq12d 4098 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣}))) |
53 | 52 | cbviunv 4970 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑥 ∈ 𝑤 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣})) |
54 | | preq2 4670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑦 → {𝑥, 𝑣} = {𝑥, 𝑦}) |
55 | 54 | cbvmptv 5187 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣}) = (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦}) |
56 | | mpteq1 5167 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦}) = (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})) |
57 | 55, 56 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣}) = (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})) |
58 | 57 | rneqd 5847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → ran (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣}) = ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})) |
59 | 58 | uneq2d 4097 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣})) = ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦}))) |
60 | 43, 59 | iuneq12d 4952 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ∪
𝑥 ∈ 𝑤 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑥, 𝑣})) = ∪
𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦}))) |
61 | 53, 60 | eqtrid 2790 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → ∪
𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦}))) |
62 | 45, 61 | uneq12d 4098 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → ((𝑤 ∪ ∪ 𝑤) ∪ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))) |
63 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐹‘𝑛) → 𝑤 = (𝐹‘𝑛)) |
64 | | unieq 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐹‘𝑛) → ∪ 𝑤 = ∪
(𝐹‘𝑛)) |
65 | 63, 64 | uneq12d 4098 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑛) → (𝑤 ∪ ∪ 𝑤) = ((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛))) |
66 | | mpteq1 5167 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝐹‘𝑛) → (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) |
67 | 66 | rneqd 5847 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐹‘𝑛) → ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) |
68 | 67 | uneq2d 4097 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐹‘𝑛) → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}))) |
69 | 63, 68 | iuneq12d 4952 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑛) → ∪
𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}))) |
70 | 65, 69 | uneq12d 4098 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹‘𝑛) → ((𝑤 ∪ ∪ 𝑤) ∪ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∪ ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})))) |
71 | 1, 62, 70 | frsucmpt2 8271 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ω ∧ (((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∪ ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑛) = (((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∪ ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})))) |
72 | 33, 42, 71 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) = (((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∪ ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})))) |
73 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) |
74 | 27 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → (wUniCl‘𝐴) ∈ WUni) |
75 | 73 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → 𝑢 ∈ (wUniCl‘𝐴)) |
76 | 74, 75 | wunelss 10464 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → 𝑢 ⊆ (wUniCl‘𝐴)) |
77 | 76 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹‘𝑛)𝑢 ⊆ (wUniCl‘𝐴)) |
78 | | unissb 4873 |
. . . . . . . . . . . . 13
⊢ (∪ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹‘𝑛)𝑢 ⊆ (wUniCl‘𝐴)) |
79 | 77, 78 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → ∪
(𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) |
80 | 73, 79 | unssd 4120 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → ((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ⊆ (wUniCl‘𝐴)) |
81 | 74, 75 | wunpw 10463 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → 𝒫 𝑢 ∈ (wUniCl‘𝐴)) |
82 | 74, 75 | wununi 10462 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → ∪ 𝑢 ∈ (wUniCl‘𝐴)) |
83 | 81, 82 | prssd 4755 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → {𝒫 𝑢, ∪ 𝑢} ⊆ (wUniCl‘𝐴)) |
84 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) ∧ 𝑣 ∈ (𝐹‘𝑛)) → (wUniCl‘𝐴) ∈ WUni) |
85 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) ∧ 𝑣 ∈ (𝐹‘𝑛)) → 𝑢 ∈ (wUniCl‘𝐴)) |
86 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) |
87 | 86 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) ∧ 𝑣 ∈ (𝐹‘𝑛)) → 𝑣 ∈ (wUniCl‘𝐴)) |
88 | 84, 85, 87 | wunpr 10465 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) ∧ 𝑣 ∈ (𝐹‘𝑛)) → {𝑢, 𝑣} ∈ (wUniCl‘𝐴)) |
89 | 88 | fmpttd 6989 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}):(𝐹‘𝑛)⟶(wUniCl‘𝐴)) |
90 | 89 | frnd 6608 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}) ⊆ (wUniCl‘𝐴)) |
91 | 83, 90 | unssd 4120 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) ∧ 𝑢 ∈ (𝐹‘𝑛)) → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴)) |
92 | 91 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → ∀𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴)) |
93 | | iunss 4975 |
. . . . . . . . . . . 12
⊢ (∪ 𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴) ↔ ∀𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴)) |
94 | 92, 93 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → ∪ 𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣})) ⊆ (wUniCl‘𝐴)) |
95 | 80, 94 | unssd 4120 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → (((𝐹‘𝑛) ∪ ∪ (𝐹‘𝑛)) ∪ ∪
𝑢 ∈ (𝐹‘𝑛)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑛) ↦ {𝑢, 𝑣}))) ⊆ (wUniCl‘𝐴)) |
96 | 72, 95 | eqsstrd 3959 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) ∧ (𝐹‘𝑛) ⊆ (wUniCl‘𝐴)) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)) |
97 | 96 | ex 413 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω) → ((𝐹‘𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴))) |
98 | 97 | expcom 414 |
. . . . . . 7
⊢ (𝑛 ∈ ω → (𝐴 ∈ 𝑉 → ((𝐹‘𝑛) ⊆ (wUniCl‘𝐴) → (𝐹‘suc 𝑛) ⊆ (wUniCl‘𝐴)))) |
99 | 13, 15, 17, 32, 98 | finds2 7747 |
. . . . . 6
⊢ (𝑚 ∈ ω → (𝐴 ∈ 𝑉 → (𝐹‘𝑚) ⊆ (wUniCl‘𝐴))) |
100 | 99 | com12 32 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑚 ∈ ω → (𝐹‘𝑚) ⊆ (wUniCl‘𝐴))) |
101 | 100 | ralrimiv 3102 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∀𝑚 ∈ ω (𝐹‘𝑚) ⊆ (wUniCl‘𝐴)) |
102 | | iunss 4975 |
. . . 4
⊢ (∪ 𝑚 ∈ ω (𝐹‘𝑚) ⊆ (wUniCl‘𝐴) ↔ ∀𝑚 ∈ ω (𝐹‘𝑚) ⊆ (wUniCl‘𝐴)) |
103 | 101, 102 | sylibr 233 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪
𝑚 ∈ ω (𝐹‘𝑚) ⊆ (wUniCl‘𝐴)) |
104 | 11, 103 | eqsstrid 3969 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝑈 ⊆ (wUniCl‘𝐴)) |
105 | 5, 104 | eqssd 3938 |
1
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = 𝑈) |