MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunpw Structured version   Visualization version   GIF version

Theorem wunpw 10463
Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunpw (𝜑 → 𝒫 𝐴𝑈)

Proof of Theorem wunpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4549 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2823 . 2 (𝑥 = 𝐴 → (𝒫 𝑥𝑈 ↔ 𝒫 𝐴𝑈))
3 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
4 iswun 10460 . . . . 5 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
54ibi 266 . . . 4 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
65simp3d 1143 . . 3 (𝑈 ∈ WUni → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
7 simp2 1136 . . . 4 (( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝒫 𝑥𝑈)
87ralimi 3087 . . 3 (∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥𝑈 𝒫 𝑥𝑈)
93, 6, 83syl 18 . 2 (𝜑 → ∀𝑥𝑈 𝒫 𝑥𝑈)
10 wununi.2 . 2 (𝜑𝐴𝑈)
112, 9, 10rspcdva 3562 1 (𝜑 → 𝒫 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  c0 4256  𝒫 cpw 4533  {cpr 4563   cuni 4839  Tr wtr 5191  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840  df-tr 5192  df-wun 10458
This theorem is referenced by:  wunss  10468  wunr1om  10475  wunxp  10480  wunpm  10481  intwun  10491  r1wunlim  10493  wuncval2  10503  wuncn  10926  wunfunc  17614  wunfuncOLD  17615  wunnat  17672  wunnatOLD  17673  catcoppccl  17832  catcoppcclOLD  17833  catcfuccl  17834  catcfucclOLD  17835  catcxpccl  17924  catcxpcclOLD  17925  ex-sategoelel  33383
  Copyright terms: Public domain W3C validator