Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunpw Structured version   Visualization version   GIF version

Theorem wunpw 10121
 Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunpw (𝜑 → 𝒫 𝐴𝑈)

Proof of Theorem wunpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4540 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2895 . 2 (𝑥 = 𝐴 → (𝒫 𝑥𝑈 ↔ 𝒫 𝐴𝑈))
3 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
4 iswun 10118 . . . . 5 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
54ibi 269 . . . 4 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
65simp3d 1139 . . 3 (𝑈 ∈ WUni → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
7 simp2 1132 . . . 4 (( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝒫 𝑥𝑈)
87ralimi 3158 . . 3 (∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥𝑈 𝒫 𝑥𝑈)
93, 6, 83syl 18 . 2 (𝜑 → ∀𝑥𝑈 𝒫 𝑥𝑈)
10 wununi.2 . 2 (𝜑𝐴𝑈)
112, 9, 10rspcdva 3623 1 (𝜑 → 𝒫 𝐴𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1082   = wceq 1531   ∈ wcel 2108   ≠ wne 3014  ∀wral 3136  ∅c0 4289  𝒫 cpw 4537  {cpr 4561  ∪ cuni 4830  Tr wtr 5163  WUnicwun 10114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-in 3941  df-ss 3950  df-pw 4539  df-uni 4831  df-tr 5164  df-wun 10116 This theorem is referenced by:  wunss  10126  wunr1om  10133  wunxp  10138  wunpm  10139  intwun  10149  r1wunlim  10151  wuncval2  10161  wuncn  10584  wunfunc  17161  wunnat  17218  catcoppccl  17360  catcfuccl  17361  catcxpccl  17449  ex-sategoelel  32661
 Copyright terms: Public domain W3C validator