![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunpw | Structured version Visualization version GIF version |
Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunpw | ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4616 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
3 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
4 | iswun 10698 | . . . . 5 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
5 | 4 | ibi 266 | . . . 4 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑈 ∈ WUni → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | simp2 1137 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
8 | 7 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈) |
9 | 3, 6, 8 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈) |
10 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
11 | 2, 9, 10 | rspcdva 3613 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∅c0 4322 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 WUnicwun 10694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-pw 4604 df-uni 4909 df-tr 5266 df-wun 10696 |
This theorem is referenced by: wunss 10706 wunr1om 10713 wunxp 10718 wunpm 10719 intwun 10729 r1wunlim 10731 wuncval2 10741 wuncn 11164 wunfunc 17848 wunfuncOLD 17849 wunnat 17906 wunnatOLD 17907 catcoppccl 18066 catcoppcclOLD 18067 catcfuccl 18068 catcfucclOLD 18069 catcxpccl 18158 catcxpcclOLD 18159 ex-sategoelel 34407 |
Copyright terms: Public domain | W3C validator |