MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunpw Structured version   Visualization version   GIF version

Theorem wunpw 10745
Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunpw (𝜑 → 𝒫 𝐴𝑈)

Proof of Theorem wunpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4619 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2824 . 2 (𝑥 = 𝐴 → (𝒫 𝑥𝑈 ↔ 𝒫 𝐴𝑈))
3 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
4 iswun 10742 . . . . 5 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
54ibi 267 . . . 4 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
65simp3d 1143 . . 3 (𝑈 ∈ WUni → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
7 simp2 1136 . . . 4 (( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝒫 𝑥𝑈)
87ralimi 3081 . . 3 (∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥𝑈 𝒫 𝑥𝑈)
93, 6, 83syl 18 . 2 (𝜑 → ∀𝑥𝑈 𝒫 𝑥𝑈)
10 wununi.2 . 2 (𝜑𝐴𝑈)
112, 9, 10rspcdva 3623 1 (𝜑 → 𝒫 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  c0 4339  𝒫 cpw 4605  {cpr 4633   cuni 4912  Tr wtr 5265  WUnicwun 10738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-v 3480  df-ss 3980  df-pw 4607  df-uni 4913  df-tr 5266  df-wun 10740
This theorem is referenced by:  wunss  10750  wunr1om  10757  wunxp  10762  wunpm  10763  intwun  10773  r1wunlim  10775  wuncval2  10785  wuncn  11208  wunfunc  17952  wunfuncOLD  17953  wunnat  18011  wunnatOLD  18012  catcoppccl  18171  catcoppcclOLD  18172  catcfuccl  18173  catcfucclOLD  18174  catcxpccl  18263  catcxpcclOLD  18264  ex-sategoelel  35406
  Copyright terms: Public domain W3C validator