| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunpw | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunpw | ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4561 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
| 3 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 4 | iswun 10595 | . . . . 5 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
| 5 | 4 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
| 6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑈 ∈ WUni → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
| 7 | simp2 1137 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
| 8 | 7 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈) |
| 9 | 3, 6, 8 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈) |
| 10 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 11 | 2, 9, 10 | rspcdva 3573 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4280 𝒫 cpw 4547 {cpr 4575 ∪ cuni 4856 Tr wtr 5196 WUnicwun 10591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-pw 4549 df-uni 4857 df-tr 5197 df-wun 10593 |
| This theorem is referenced by: wunss 10603 wunr1om 10610 wunxp 10615 wunpm 10616 intwun 10626 r1wunlim 10628 wuncval2 10638 wuncn 11061 wunfunc 17808 wunnat 17866 catcoppccl 18024 catcfuccl 18025 catcxpccl 18113 ex-sategoelel 35465 |
| Copyright terms: Public domain | W3C validator |