![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunpw | Structured version Visualization version GIF version |
Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunpw | ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4578 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2819 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
3 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
4 | iswun 10648 | . . . . 5 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
5 | 4 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
6 | 5 | simp3d 1145 | . . 3 ⊢ (𝑈 ∈ WUni → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | simp2 1138 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | |
8 | 7 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈) |
9 | 3, 6, 8 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈) |
10 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
11 | 2, 9, 10 | rspcdva 3584 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∅c0 4286 𝒫 cpw 4564 {cpr 4592 ∪ cuni 4869 Tr wtr 5226 WUnicwun 10644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-v 3449 df-in 3921 df-ss 3931 df-pw 4566 df-uni 4870 df-tr 5227 df-wun 10646 |
This theorem is referenced by: wunss 10656 wunr1om 10663 wunxp 10668 wunpm 10669 intwun 10679 r1wunlim 10681 wuncval2 10691 wuncn 11114 wunfunc 17793 wunfuncOLD 17794 wunnat 17851 wunnatOLD 17852 catcoppccl 18011 catcoppcclOLD 18012 catcfuccl 18013 catcfucclOLD 18014 catcxpccl 18103 catcxpcclOLD 18104 ex-sategoelel 34079 |
Copyright terms: Public domain | W3C validator |