![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunsuc | Structured version Visualization version GIF version |
Description: A weak universe is closed under successors. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunsuc | ⊢ (𝜑 → suc 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6035 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | wununi.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 2, 3 | wunsn 9936 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
5 | 2, 3, 4 | wunun 9930 | . 2 ⊢ (𝜑 → (𝐴 ∪ {𝐴}) ∈ 𝑈) |
6 | 1, 5 | syl5eqel 2870 | 1 ⊢ (𝜑 → suc 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 ∪ cun 3827 {csn 4441 suc csuc 6031 WUnicwun 9920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-v 3417 df-un 3834 df-in 3836 df-ss 3843 df-sn 4442 df-pr 4444 df-uni 4713 df-tr 5031 df-suc 6035 df-wun 9922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |