Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wun0 | Structured version Visualization version GIF version |
Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
wun0 | ⊢ (𝜑 → ∅ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | iswun 10391 | . . . . . 6 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
3 | 2 | ibi 266 | . . . . 5 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
4 | 3 | simp2d 1141 | . . . 4 ⊢ (𝑈 ∈ WUni → 𝑈 ≠ ∅) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ≠ ∅) |
6 | n0 4277 | . . 3 ⊢ (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑈) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑈) |
8 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ WUni) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
10 | 0ss 4327 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
11 | 10 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∅ ⊆ 𝑥) |
12 | 8, 9, 11 | wunss 10399 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝑈) |
13 | 7, 12 | exlimddv 1939 | 1 ⊢ (𝜑 → ∅ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {cpr 4560 ∪ cuni 4836 Tr wtr 5187 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-uni 4837 df-tr 5188 df-wun 10389 |
This theorem is referenced by: wunr1om 10406 wunfi 10408 wuntpos 10421 intwun 10422 r1wunlim 10424 wuncval2 10434 wunress 16886 wunressOLD 16887 catcoppccl 17748 catcoppcclOLD 17749 ex-sategoelel 33283 |
Copyright terms: Public domain | W3C validator |