MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wun0 Structured version   Visualization version   GIF version

Theorem wun0 10732
Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wun0 (𝜑 → ∅ ∈ 𝑈)

Proof of Theorem wun0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wun0.1 . . . 4 (𝜑𝑈 ∈ WUni)
2 iswun 10718 . . . . . 6 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
32ibi 267 . . . . 5 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
43simp2d 1143 . . . 4 (𝑈 ∈ WUni → 𝑈 ≠ ∅)
51, 4syl 17 . . 3 (𝜑𝑈 ≠ ∅)
6 n0 4328 . . 3 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
75, 6sylib 218 . 2 (𝜑 → ∃𝑥 𝑥𝑈)
81adantr 480 . . 3 ((𝜑𝑥𝑈) → 𝑈 ∈ WUni)
9 simpr 484 . . 3 ((𝜑𝑥𝑈) → 𝑥𝑈)
10 0ss 4375 . . . 4 ∅ ⊆ 𝑥
1110a1i 11 . . 3 ((𝜑𝑥𝑈) → ∅ ⊆ 𝑥)
128, 9, 11wunss 10726 . 2 ((𝜑𝑥𝑈) → ∅ ∈ 𝑈)
137, 12exlimddv 1935 1 (𝜑 → ∅ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2108  wne 2932  wral 3051  wss 3926  c0 4308  𝒫 cpw 4575  {cpr 4603   cuni 4883  Tr wtr 5229  WUnicwun 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-in 3933  df-ss 3943  df-nul 4309  df-pw 4577  df-uni 4884  df-tr 5230  df-wun 10716
This theorem is referenced by:  wunr1om  10733  wunfi  10735  wuntpos  10748  intwun  10749  r1wunlim  10751  wuncval2  10761  wunress  17270  catcoppccl  18130  ex-sategoelel  35443
  Copyright terms: Public domain W3C validator