| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wun0 | Structured version Visualization version GIF version | ||
| Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| Ref | Expression |
|---|---|
| wun0 | ⊢ (𝜑 → ∅ ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | iswun 10595 | . . . . . 6 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
| 3 | 2 | ibi 267 | . . . . 5 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
| 4 | 3 | simp2d 1143 | . . . 4 ⊢ (𝑈 ∈ WUni → 𝑈 ≠ ∅) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ≠ ∅) |
| 6 | n0 4300 | . . 3 ⊢ (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑈) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑈) |
| 8 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ WUni) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
| 10 | 0ss 4347 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∅ ⊆ 𝑥) |
| 12 | 8, 9, 11 | wunss 10603 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝑈) |
| 13 | 7, 12 | exlimddv 1936 | 1 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {cpr 4575 ∪ cuni 4856 Tr wtr 5196 WUnicwun 10591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-uni 4857 df-tr 5197 df-wun 10593 |
| This theorem is referenced by: wunr1om 10610 wunfi 10612 wuntpos 10625 intwun 10626 r1wunlim 10628 wuncval2 10638 wunress 17160 catcoppccl 18024 ex-sategoelel 35465 |
| Copyright terms: Public domain | W3C validator |