![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wun0 | Structured version Visualization version GIF version |
Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
wun0 | ⊢ (𝜑 → ∅ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | iswun 10699 | . . . . . 6 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
3 | 2 | ibi 267 | . . . . 5 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
4 | 3 | simp2d 1144 | . . . 4 ⊢ (𝑈 ∈ WUni → 𝑈 ≠ ∅) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ≠ ∅) |
6 | n0 4347 | . . 3 ⊢ (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑈) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑈) |
8 | 1 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ WUni) |
9 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
10 | 0ss 4397 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
11 | 10 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∅ ⊆ 𝑥) |
12 | 8, 9, 11 | wunss 10707 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝑈) |
13 | 7, 12 | exlimddv 1939 | 1 ⊢ (𝜑 → ∅ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 {cpr 4631 ∪ cuni 4909 Tr wtr 5266 WUnicwun 10695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 df-pw 4605 df-uni 4910 df-tr 5267 df-wun 10697 |
This theorem is referenced by: wunr1om 10714 wunfi 10716 wuntpos 10729 intwun 10730 r1wunlim 10732 wuncval2 10742 wunress 17195 wunressOLD 17196 catcoppccl 18067 catcoppcclOLD 18068 ex-sategoelel 34412 |
Copyright terms: Public domain | W3C validator |