MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsn Structured version   Visualization version   GIF version

Theorem wunsn 10403
Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsn (𝜑 → {𝐴} ∈ 𝑈)

Proof of Theorem wunsn
StepHypRef Expression
1 dfsn2 4571 . 2 {𝐴} = {𝐴, 𝐴}
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 wununi.2 . . 3 (𝜑𝐴𝑈)
42, 3, 3wunpr 10396 . 2 (𝜑 → {𝐴, 𝐴} ∈ 𝑈)
51, 4eqeltrid 2843 1 (𝜑 → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {csn 4558  {cpr 4560  WUnicwun 10387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837  df-tr 5188  df-wun 10389
This theorem is referenced by:  wunsuc  10404  wunfi  10408  wunop  10409  wuntpos  10421  wunsets  16806  1strwunbndx  16857  catcoppccl  17748  catcoppcclOLD  17749
  Copyright terms: Public domain W3C validator