| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunsn | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunsn | ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4590 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | wununi.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 2, 3, 3 | wunpr 10611 | . 2 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
| 5 | 1, 4 | eqeltrid 2837 | 1 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {csn 4577 {cpr 4579 WUnicwun 10602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-v 3439 df-un 3903 df-ss 3915 df-sn 4578 df-pr 4580 df-uni 4861 df-tr 5203 df-wun 10604 |
| This theorem is referenced by: wunsuc 10619 wunfi 10623 wunop 10624 wuntpos 10636 wunsets 17095 1strwunbndx 17143 catcoppccl 18032 |
| Copyright terms: Public domain | W3C validator |