MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsn Structured version   Visualization version   GIF version

Theorem wunsn 10676
Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsn (𝜑 → {𝐴} ∈ 𝑈)

Proof of Theorem wunsn
StepHypRef Expression
1 dfsn2 4605 . 2 {𝐴} = {𝐴, 𝐴}
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 wununi.2 . . 3 (𝜑𝐴𝑈)
42, 3, 3wunpr 10669 . 2 (𝜑 → {𝐴, 𝐴} ∈ 𝑈)
51, 4eqeltrid 2833 1 (𝜑 → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {csn 4592  {cpr 4594  WUnicwun 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-ss 3934  df-sn 4593  df-pr 4595  df-uni 4875  df-tr 5218  df-wun 10662
This theorem is referenced by:  wunsuc  10677  wunfi  10681  wunop  10682  wuntpos  10694  wunsets  17154  1strwunbndx  17202  catcoppccl  18086
  Copyright terms: Public domain W3C validator