MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsn Structured version   Visualization version   GIF version

Theorem wunsn 10602
Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsn (𝜑 → {𝐴} ∈ 𝑈)

Proof of Theorem wunsn
StepHypRef Expression
1 dfsn2 4584 . 2 {𝐴} = {𝐴, 𝐴}
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 wununi.2 . . 3 (𝜑𝐴𝑈)
42, 3, 3wunpr 10595 . 2 (𝜑 → {𝐴, 𝐴} ∈ 𝑈)
51, 4eqeltrid 2835 1 (𝜑 → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {csn 4571  {cpr 4573  WUnicwun 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-un 3902  df-ss 3914  df-sn 4572  df-pr 4574  df-uni 4855  df-tr 5194  df-wun 10588
This theorem is referenced by:  wunsuc  10603  wunfi  10607  wunop  10608  wuntpos  10620  wunsets  17083  1strwunbndx  17131  catcoppccl  18019
  Copyright terms: Public domain W3C validator