![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunsn | Structured version Visualization version GIF version |
Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunsn | ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4640 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | wununi.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 2, 3, 3 | wunpr 10700 | . 2 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {csn 4627 {cpr 4629 WUnicwun 10691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-v 3477 df-un 3952 df-in 3954 df-ss 3964 df-sn 4628 df-pr 4630 df-uni 4908 df-tr 5265 df-wun 10693 |
This theorem is referenced by: wunsuc 10708 wunfi 10712 wunop 10713 wuntpos 10725 wunsets 17106 1strwunbndx 17159 catcoppccl 18063 catcoppcclOLD 18064 |
Copyright terms: Public domain | W3C validator |