MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunun Structured version   Visualization version   GIF version

Theorem wunun 10779
Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunun (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunun
StepHypRef Expression
1 wununi.2 . . 3 (𝜑𝐴𝑈)
2 wunpr.3 . . 3 (𝜑𝐵𝑈)
3 uniprg 4947 . . 3 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3syl2anc 583 . 2 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
5 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1, 2wunpr 10778 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
75, 6wununi 10775 . 2 (𝜑 {𝐴, 𝐵} ∈ 𝑈)
84, 7eqeltrrd 2845 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cun 3974  {cpr 4650   cuni 4931  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-tr 5284  df-wun 10771
This theorem is referenced by:  wuntp  10780  wunsuc  10786  wunfi  10790  wunxp  10793  wuntpos  10803  wunsets  17224  catcoppccl  18184  catcoppcclOLD  18185
  Copyright terms: Public domain W3C validator