Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunun | Structured version Visualization version GIF version |
Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunun | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | wunpr.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | uniprg 4853 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
5 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | 5, 1, 2 | wunpr 10396 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
7 | 5, 6 | wununi 10393 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ∈ 𝑈) |
8 | 4, 7 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {cpr 4560 ∪ cuni 4836 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-tr 5188 df-wun 10389 |
This theorem is referenced by: wuntp 10398 wunsuc 10404 wunfi 10408 wunxp 10411 wuntpos 10421 wunsets 16806 catcoppccl 17748 catcoppcclOLD 17749 |
Copyright terms: Public domain | W3C validator |