MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunun Structured version   Visualization version   GIF version

Theorem wunun 10663
Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunun (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunun
StepHypRef Expression
1 wununi.2 . . 3 (𝜑𝐴𝑈)
2 wunpr.3 . . 3 (𝜑𝐵𝑈)
3 uniprg 4887 . . 3 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3syl2anc 584 . 2 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
5 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1, 2wunpr 10662 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
75, 6wununi 10659 . 2 (𝜑 {𝐴, 𝐵} ∈ 𝑈)
84, 7eqeltrrd 2829 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3912  {cpr 4591   cuni 4871  WUnicwun 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592  df-uni 4872  df-tr 5215  df-wun 10655
This theorem is referenced by:  wuntp  10664  wunsuc  10670  wunfi  10674  wunxp  10677  wuntpos  10687  wunsets  17147  catcoppccl  18079
  Copyright terms: Public domain W3C validator