MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunun Structured version   Visualization version   GIF version

Theorem wunun 10701
Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunun (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunun
StepHypRef Expression
1 wununi.2 . . 3 (𝜑𝐴𝑈)
2 wunpr.3 . . 3 (𝜑𝐵𝑈)
3 uniprg 4915 . . 3 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3syl2anc 583 . 2 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
5 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1, 2wunpr 10700 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
75, 6wununi 10697 . 2 (𝜑 {𝐴, 𝐵} ∈ 𝑈)
84, 7eqeltrrd 2826 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3938  {cpr 4622   cuni 4899  WUnicwun 10691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-v 3468  df-un 3945  df-in 3947  df-ss 3957  df-sn 4621  df-pr 4623  df-uni 4900  df-tr 5256  df-wun 10693
This theorem is referenced by:  wuntp  10702  wunsuc  10708  wunfi  10712  wunxp  10715  wuntpos  10725  wunsets  17109  catcoppccl  18069  catcoppcclOLD  18070
  Copyright terms: Public domain W3C validator