![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunun | Structured version Visualization version GIF version |
Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunun | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | wunpr.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | uniprg 4919 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
5 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | 5, 1, 2 | wunpr 10724 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
7 | 5, 6 | wununi 10721 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ∈ 𝑈) |
8 | 4, 7 | eqeltrrd 2829 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 {cpr 4626 ∪ cuni 4903 WUnicwun 10715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-sn 4625 df-pr 4627 df-uni 4904 df-tr 5260 df-wun 10717 |
This theorem is referenced by: wuntp 10726 wunsuc 10732 wunfi 10736 wunxp 10739 wuntpos 10749 wunsets 17137 catcoppccl 18097 catcoppcclOLD 18098 |
Copyright terms: Public domain | W3C validator |