New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opbr2nd | GIF version |
Description: Binary relationship of an ordered pair over 2nd. (Contributed by SF, 6-Feb-2015.) |
Ref | Expression |
---|---|
opbr1st.1 | ⊢ A ∈ V |
opbr1st.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
opbr2nd | ⊢ (〈A, B〉2nd C ↔ B = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . . 3 ⊢ (〈A, B〉2nd C → (〈A, B〉 ∈ V ∧ C ∈ V)) | |
2 | 1 | simprd 449 | . 2 ⊢ (〈A, B〉2nd C → C ∈ V) |
3 | opbr1st.2 | . . 3 ⊢ B ∈ V | |
4 | eleq1 2413 | . . 3 ⊢ (B = C → (B ∈ V ↔ C ∈ V)) | |
5 | 3, 4 | mpbii 202 | . 2 ⊢ (B = C → C ∈ V) |
6 | breq2 4644 | . . 3 ⊢ (x = C → (〈A, B〉2nd x ↔ 〈A, B〉2nd C)) | |
7 | eqeq2 2362 | . . 3 ⊢ (x = C → (B = x ↔ B = C)) | |
8 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
9 | 8 | br2nd 4860 | . . . 4 ⊢ (〈A, B〉2nd x ↔ ∃y〈A, B〉 = 〈y, x〉) |
10 | opbr1st.1 | . . . . . 6 ⊢ A ∈ V | |
11 | biidd 228 | . . . . . 6 ⊢ (y = A → (x = B ↔ x = B)) | |
12 | 10, 11 | ceqsexv 2895 | . . . . 5 ⊢ (∃y(y = A ∧ x = B) ↔ x = B) |
13 | eqcom 2355 | . . . . . . 7 ⊢ (〈A, B〉 = 〈y, x〉 ↔ 〈y, x〉 = 〈A, B〉) | |
14 | opth 4603 | . . . . . . 7 ⊢ (〈y, x〉 = 〈A, B〉 ↔ (y = A ∧ x = B)) | |
15 | 13, 14 | bitri 240 | . . . . . 6 ⊢ (〈A, B〉 = 〈y, x〉 ↔ (y = A ∧ x = B)) |
16 | 15 | exbii 1582 | . . . . 5 ⊢ (∃y〈A, B〉 = 〈y, x〉 ↔ ∃y(y = A ∧ x = B)) |
17 | eqcom 2355 | . . . . 5 ⊢ (B = x ↔ x = B) | |
18 | 12, 16, 17 | 3bitr4i 268 | . . . 4 ⊢ (∃y〈A, B〉 = 〈y, x〉 ↔ B = x) |
19 | 9, 18 | bitri 240 | . . 3 ⊢ (〈A, B〉2nd x ↔ B = x) |
20 | 6, 7, 19 | vtoclbg 2916 | . 2 ⊢ (C ∈ V → (〈A, B〉2nd C ↔ B = C)) |
21 | 2, 5, 20 | pm5.21nii 342 | 1 ⊢ (〈A, B〉2nd C ↔ B = C) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 〈cop 4562 class class class wbr 4640 2nd c2nd 4784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-2nd 4798 |
This theorem is referenced by: 2ndfo 5507 opfv2nd 5516 brco2nd 5779 trtxp 5782 op1st2nd 5791 otsnelsi3 5806 addcfnex 5825 qrpprod 5837 xpassenlem 6057 xpassen 6058 enpw1lem1 6062 |
Copyright terms: Public domain | W3C validator |