New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfiota3 | GIF version |
Description: The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) |
Ref | Expression |
---|---|
dfiota3 | ⊢ (℩xφ) = if(∃!xφ, ∪{x ∣ φ}, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotauni 4352 | . . 3 ⊢ (∃!xφ → (℩xφ) = ∪{x ∣ φ}) | |
2 | iftrue 3669 | . . 3 ⊢ (∃!xφ → if(∃!xφ, ∪{x ∣ φ}, ∅) = ∪{x ∣ φ}) | |
3 | 1, 2 | eqtr4d 2388 | . 2 ⊢ (∃!xφ → (℩xφ) = if(∃!xφ, ∪{x ∣ φ}, ∅)) |
4 | iotanul 4355 | . . 3 ⊢ (¬ ∃!xφ → (℩xφ) = ∅) | |
5 | iffalse 3670 | . . 3 ⊢ (¬ ∃!xφ → if(∃!xφ, ∪{x ∣ φ}, ∅) = ∅) | |
6 | 4, 5 | eqtr4d 2388 | . 2 ⊢ (¬ ∃!xφ → (℩xφ) = if(∃!xφ, ∪{x ∣ φ}, ∅)) |
7 | 3, 6 | pm2.61i 156 | 1 ⊢ (℩xφ) = if(∃!xφ, ∪{x ∣ φ}, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∃!weu 2204 {cab 2339 ∅c0 3551 ifcif 3663 ∪cuni 3892 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-if 3664 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |