New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elpw12 | GIF version |
Description: Membership in a unit power class applied twice. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
elpw12 | ⊢ (A ∈ ℘1℘1B ↔ ∃x ∈ B A = {{x}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw1 4145 | . 2 ⊢ (A ∈ ℘1℘1B ↔ ∃y ∈ ℘1 BA = {y}) | |
2 | elpw1 4145 | . . . . . 6 ⊢ (y ∈ ℘1B ↔ ∃x ∈ B y = {x}) | |
3 | 2 | anbi1i 676 | . . . . 5 ⊢ ((y ∈ ℘1B ∧ A = {y}) ↔ (∃x ∈ B y = {x} ∧ A = {y})) |
4 | r19.41v 2765 | . . . . 5 ⊢ (∃x ∈ B (y = {x} ∧ A = {y}) ↔ (∃x ∈ B y = {x} ∧ A = {y})) | |
5 | 3, 4 | bitr4i 243 | . . . 4 ⊢ ((y ∈ ℘1B ∧ A = {y}) ↔ ∃x ∈ B (y = {x} ∧ A = {y})) |
6 | 5 | exbii 1582 | . . 3 ⊢ (∃y(y ∈ ℘1B ∧ A = {y}) ↔ ∃y∃x ∈ B (y = {x} ∧ A = {y})) |
7 | df-rex 2621 | . . 3 ⊢ (∃y ∈ ℘1 BA = {y} ↔ ∃y(y ∈ ℘1B ∧ A = {y})) | |
8 | rexcom4 2879 | . . 3 ⊢ (∃x ∈ B ∃y(y = {x} ∧ A = {y}) ↔ ∃y∃x ∈ B (y = {x} ∧ A = {y})) | |
9 | 6, 7, 8 | 3bitr4i 268 | . 2 ⊢ (∃y ∈ ℘1 BA = {y} ↔ ∃x ∈ B ∃y(y = {x} ∧ A = {y})) |
10 | snex 4112 | . . . 4 ⊢ {x} ∈ V | |
11 | sneq 3745 | . . . . 5 ⊢ (y = {x} → {y} = {{x}}) | |
12 | 11 | eqeq2d 2364 | . . . 4 ⊢ (y = {x} → (A = {y} ↔ A = {{x}})) |
13 | 10, 12 | ceqsexv 2895 | . . 3 ⊢ (∃y(y = {x} ∧ A = {y}) ↔ A = {{x}}) |
14 | 13 | rexbii 2640 | . 2 ⊢ (∃x ∈ B ∃y(y = {x} ∧ A = {y}) ↔ ∃x ∈ B A = {{x}}) |
15 | 1, 9, 14 | 3bitri 262 | 1 ⊢ (A ∈ ℘1℘1B ↔ ∃x ∈ B A = {{x}}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 {csn 3738 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: dfaddc2 4382 ltfinex 4465 ncfinlowerlem1 4483 nnpweqlem1 4523 setconslem6 4737 |
Copyright terms: Public domain | W3C validator |