New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snelpw1 | GIF version |
Description: Membership of a singleton in a unit power class. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
snelpw1 | ⊢ ({A} ∈ ℘1B ↔ A ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2355 | . . . 4 ⊢ ({A} = {x} ↔ {x} = {A}) | |
2 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
3 | 2 | sneqb 3877 | . . . 4 ⊢ ({x} = {A} ↔ x = A) |
4 | 1, 3 | bitri 240 | . . 3 ⊢ ({A} = {x} ↔ x = A) |
5 | 4 | rexbii 2640 | . 2 ⊢ (∃x ∈ B {A} = {x} ↔ ∃x ∈ B x = A) |
6 | elpw1 4145 | . 2 ⊢ ({A} ∈ ℘1B ↔ ∃x ∈ B {A} = {x}) | |
7 | risset 2662 | . 2 ⊢ (A ∈ B ↔ ∃x ∈ B x = A) | |
8 | 5, 6, 7 | 3bitr4i 268 | 1 ⊢ ({A} ∈ ℘1B ↔ A ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 {csn 3738 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: eqpw1 4163 pw1in 4165 pw10b 4167 pw1disj 4168 pw111 4171 ins2kss 4280 ins3kss 4281 ins2kexg 4306 ins3kexg 4307 dfpw2 4328 eqpw1uni 4331 ssfin 4471 ncfinraiselem2 4481 ncfinraise 4482 ncfinlower 4484 tfinsuc 4499 nnadjoinlem1 4520 sfindbl 4531 tfinnnlem1 4534 enpw1 6063 enprmaplem4 6080 nenpw1pwlem2 6086 nchoicelem11 6300 scancan 6332 |
Copyright terms: Public domain | W3C validator |